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Element Pattern of an Axial Dipole in a C:\indrical
Phased Array, Part 1: Theory

1. INTRODUCTION

Circular cylindrical antenna arrays are of interest for radar and communica-
tion applications because of the uniformity of their circumferential radiation char-
acteristics. Some¢ cylindrical array applications require a high degree of per-
formance antenna characteristics such as precir2 beam pointing, accurate angle
tracking, ultralow sidelobes, and wide bandwidth. To achieve the associated tight
array illumination tolerances, mutual coupling between the radiating elements
must be accurately accounted for. .

Surveys of the state-of-the-art of cylindrical phased arrays and their design
congiderations are given. .2 However, most of the cited bibliographies deal with
aperture arrays. On the other hand, a dipole element is an atltractive choice for
an array radiator due to its simplicity of manufacture, reasonably wide bandwidth,
and polarization purity. A

These factors motivated the two-phase effort: theoretical and experimental.

(Received for publication 31 January 1984)

1. Hessel, A. (1972) Mutual coupling effects in circular arrays on cylindrical
surfaces - Aperture design implications and analysis, in Phage Array An-
tennas, A.A, Oliner and G. d. Kuiitel, Eds., Artech House, Dedharn, Mass.

2. Mailloux, R.J. (1982) Phased array theory and technology, Proc. IEEE,
70(Nc. 3)




In the first phase, cylindrical, stacked, ring-antenna arrays of uniformly spaced
axial dipoles were investigated to establish the mutually coupled element p.ttern
characteristics. A detailed account of this investigation is provided in Part 1 of
this report and has been briefly reported.’ The second phase of the study con-
sisted of experiments augmenting and supporting the theoratical phase and is pre-
sented in Part 1.

In the theoretical analysis, a modal approach {3 employed that utilizes a unit
cell method similar to that reported for an array of aperture elements in a circu-
lar cylindrical ground.* The modal approach was chosen for several reasons.
Agymptotic trutmonus’ ¢ may be well suited to modeling arrays ol arbitrary con-
formal shapes after their numerical validity has been ascertained by comparison
with exact solutions of relevant canonical problems. The modal technique avoids
the uncertain accuracy of the asymptctic approaches and has the following advan-
tages: (1) In principle, it furnishes an exact solution subject only to truncation er-
rors that can be estimated; (2) R is uniformly valid in all spatial regions, whereas
asymptatic formulations employ different representstions in various angular do-
mains and require transition functions to connect the results amoothly; (3) It has
additional flexibility in that it provides answers for both rectangular and isosceles
triangular array lattices, the latter after a minor modification; and (4) It yields
both the realized gain and element pattern phase.

2. ANALYSIS FOR RECTANGULAR LATTICE

2.1 Array Model

The cylindrical array model under consideration, shown in Figure 1, consists
of an infinite number of equispaced stacked rings of axial dipoles. The rings, of
radius Po contain N equispacad identical dipoles each located coaxially a distauce
8 above an infinite, perfectly conducting, circular cylindrical surface of radius a.

3. Herper, J.C., Hessel, A., Mandarino, C., and Tomasic, B. (1980) Perform-
ance of a dipole element in a cylindrical array - A modal approach, IEEE
Auntennas Propag. Symp. Dig., University of Laval, PQ, Canada, 162-188,

4. Sureau, J.C., and Hessel, A. (1971) Element pattern for circular arrays of
waveguide-fed axial slits on large conducting cylinders, IEEE Trans, Anten-
nas Propag., AP-19, 64-76.

5. Eichmann, G., and Lee, K.S, (1978) Analysis of conformal scanning dipole

tarra s.CAltennas Propag. Symp. Dig., University of Maryland, Washing-
On. . .

6. Indenbom, M.V,, and Filippov, V.S. (1978) An asymptotic solution of the
problem: of mutual coupling between the radiztors of a convex cylindrical ar-
ray antenna, Radio EE!L Electron Phys., 23(No. 1), 42-49.
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Figure 1. Geometry of the Circular Cylindrical Array of Dipoles in a
Rectangular Lattice

The dipoles have a length L, narrow width w, and negligible radial thickness.
Their central gaps of length h are excited through identical matching networks via
respective transverse electromagnetic (TEM) transmission lines fed from matched
generators. For the case of single-element excitation, all but one of the genera-
tors are short-circuited. A typical wedge-shaped unit cell, of axial dimension d
and width b = 27rp0/ I at the dipole location, is seen in Figure 2, which shows a
dipole without its feer.




Figure 2. Unrit Cell Geometry of a Cylindrical
_ Dipole Array ,

2.2 Active Dipole Current

The performance of a singly excited dipole in a match-terminated array envi-
ronment is determined by superposition of fields generated by the various discrete,
independent azimuthal phase sequence excitations, as well as by thoge of the con-
tinuous spectrum type, the latter correspondir, to uniform-amplitude, progres-
sive-phase axial beam steering. A combination of one of each kind constitutes an
active cylindrical array excitation. ‘

As a first step toward analysis of a free-excited array. one conaiders ita
forced active excitation. The generic boundary value prohlem in this case reduces
lo that of evaluation of fields radiated by a dipole in a radial unit ¢ell with phase-
shift walls and excited by a prescribed gap voltage. Such analyais leads to the de-
termination of the unmatched, active dipole gap-impedance as a function of eiroum-+
ferential and azial phasing, frequency, and geometry. With thia information, an
appropriate matching network may be configured and the element pattern evalu~
ated,

To begin with, one observes that, for w/A << 1, the usual assumption of
strictly axial dipole currents should yield a good approximation to the desired di-~
pole performance. As a consequence, all fields may be derived from a aingle
axial component of a vector potential A 5+ The treatment is facilitated by introdue-
ing a unit cell Green's function G(r, r’; v, k,o) Which represents, to within a can-
stant factor u,. the vector potential due to an axial, electric point current element
located at r = pr” in a radial unit cell, Here, ¥(v¥ =0, 1,..., N - 1) danotes the
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circumnferential vth phase sequence excitation with a uniform unity amplitude and
a paase delay once around the array of 27y rad. The argument kzo indicates that
the progressive phase delay between the neighboring elements in any axial column
of the active array is kzod.

By linearity, the expression for the vector potential in a unit cell due to the
dipole surface current density K may be written in the form

AEvk) = 1o [ GleEivkg) Kir) d8° (1)
[

where r = (2, &, z) and S is the dipole surface. Here, G satisfies

ViG+K@ = -3l k=3 ' (2)

and is subject to the following boundary conditions:
G(a, p, z;r*) =0 (2b)

radiation condition for p - « (2&)

two Floquet conditions:

o - [\
G(p.—z-. 2)=o0 ive G(p.--z- 2} (¢d)
d -
Glo.6,5) =0 ™ud Glp.d. - 5 - (2e)
For ej“'t time dependence, the various field components are

2A
E,= ~— (aa_z: + szz) (3a)

jw 9%A,

-
- —
-

(3b)
4 k%p 3¢ Oz

Hd,=-_1_2.‘.‘i . (3¢)

Ko Op

From Eqs. (3a), (3b), and (1), it is evident, in view of Eq. (2b), that E, and Eg
vanish at p = a, Also, from Eqs. (1), (2a), and (3¢),. one finds that

s i’ Mote ac

P, R
bt e e i




H¢ (p:o ¢c z) - Hé ‘p;v ¢0 z’ =2 K("¢, . (4)

Finally, to satisfy Eqs. (2d) and (2e), G is expanded in terms of a comnlete, ortho-
normal Floquet basis

® mnld.2) = é o vm® + kpp2) | (8)

where Ve * V+mN, (vV=0,1,..., N-1;m =0, il....)andkm-kzo+21rnld.
(n=0, =i, .s.)s Setting

-0

Qrr:v.k,g) = mi_“ mnlP.0" iV Ky ¢mn(¢.:) dr. (@.2) ' (6a)

one finds from Fq. (2a) that the radicl Green's functions €mn(Ps P°) obey

1 d dg v S(p-p’ ,
29, %mm .1 : - Ao-p)
T {p 2p )+ (x, o ) 8mn > (8b)

To satisfy Eq. (2b), one rejuires €nn'ds P °) =0, and to insure Eq. (2c),

(p. P’) must have the form of an outgoin wave. or decay as p-o, With
square root choice Re (k_] = Re [(kz kz ] > 0, and Im fk,] <0, the solu-
tion for g mn is

Imn (P.0°) = 2] H‘" ‘Knp>) z, ("np<’ ' (Ta)
with
J,m(k“a) \
2, o) = 0, (ko) = u{f' o H2 Iknog) (7b)

and Py ) = max (min) (P, P*), TheJ, m and Hv(;) denote Bessel functions of the

first kind and Hankel functions of the second kind, both of order ’m

The forced dipole excitation implies a orescribed gap voltage Vg and the asso-
ciated gap electric field E ¢ = Eczo. such that V_ = -E h,

The boundary conditions on the dipole surface, E_ = 0 on the dipole arms and
E, =E g in the gap, lead via Eqs. (1) and (3a) to a linear integral equation of the
first kind for the unknown dipole current density (assumed to also flow through the
gap):




0 dipol
Bier) ki o {2, e e

([
td
"~

where
Bler)= - j—wﬁg ‘aa -+ k%) GlLr) . (8b)

The integral Eq. (8a) is solved approximately via Galerkin's procedure by first
expanding K(r“) in the form

Q

K= 2 eq Vq(d'2) | (9)

in terms of a finite set of linearly independent basis functions ¥, such that
Wq(#% 29 = 0for |8°|>w/2p,, |2°|> L/2, W (¢, 2°) = Wy (z°) for | ¢ *|< w/2p,,
|z‘| < L/2 and v, (¢°, L/2) = wq(¢‘ -L/2)= 0. where we have assumed a uniform
current density across the dipcle's narrow dimension. Using Eq. (%a) in Eq. (8a),
one hasg, in operator form, ’

Q
q§1 cq 8 Y =K, PPy ‘ (10)

where p, = p,{z°) and p_, = pw(¢‘) represent, respectively, a unit pulse of width
h centered at z° = 0, and of width w centered at @“ = 0. Relation (10) is enforced
by taking its moments with each of the W This procedure yields the desired set
of Jinear, inhomogeneous equations for the unknown set of ¢ q that is,

Q
2, % ¥p. G ¥o) =By (Yo PhPy)  (P=1, 2., P= Q. (11)
The inner (scalar) product is (f, g) defined by

w/2p L/2

ta = [ a6 [ to.a) g d - (12)

-w/2p, -L/2

Explicitly, &q. (11) reads

ko K \2
ke 2 cq Z () 42 ta09 Zury tno) (i By ) (g B

m n=-oo \ K

= Eg (¥, PhPw) (13)

o 2 ndabi
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with ¢ (ugle)!/? = 1207 @. Choosing

qr L L w ;
v, = —— —-—), q21,2....Q, (2| —=, € — (14a)
.slnL(z+z)q120. a'°'~2p,
one finde
», _ wnt ,
R ron) P,V SimCoa (4d)
where
ﬂnﬁ':
* - t14c)
s‘y' "'*w . ,
2p,
and

. Q[(.-t)“c"# - Ql#]‘.

c . (24at)
ne (koL = (AP o
Furthermore,
P ne T _ L |
(¥ PuPw) = J’ dé J WnBlazia = Lo, (15a)
~w/ap, -W2 P
where
n
. R o
8,= m-f =y . : (23

Substitutinn of Bqgs. (24) and (15) inte: Eq. (13) yields the folloming syotens of timear
inhomogeneous equations for the determination of the unknown dipole current ex-
pansion. coefficients:

Q
S .
& 3 ﬁw)zs (11=E&2‘,...,P'Q); m)(
q”_Am q P

where

[
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Ky

2
A"'=m..§-.(7) Hif {nPol 2, (Knfo)- Sy Cnp Cliq (16b)
and

Q-2
8q= cq NkL273]
4dv,

. (18¢)

2.3 Active Gap-Impedance

Once the dipole current density K(z) has been arrived at, the active gap-im-
pedance is determined via

V, -Egh ,
z'(vok!o) = <|'> = w h/2 (17)
™y K(z) dz
-h/2

where(l >denotes the average gap current, Substi‘uting Eq. (10a) into Eq. (17)
using Eq. (16c), one has

NmrL2k
Zy(v.kag) = Rglvokyg) +i Xg (v byg) = { —5 . (18)

4d 2 (Eqw) B,

2.4 Matching Network and Reflection Coefficient

For a good radiation efficiency, an identical network is incorporated in each
TEM f{eed-line to match the dipole impedance Z g for a selected pair of values of v
and kzO' This lossless reciprocal two-port network is characterized by its scat-
tering matrix §, It is defined between the reference planes on the input and output
transmission lines with characteristic impedances Z1 and Z2 and is illustrated in
Figure 3. Three specific forma of matching networks including derivation of re-
spective S-parameters are discussed in Appendix D.

With the aid of Figure 3, one can determine the active reflection coefficient rl
at the input to the matching network to be (see Section 2, Appendix D)

841 =3 ['a(¥, ko)

(19a)
1-8,, [ (v, k)

Falv. ko) =

where A = SuS22 - 812821.

R
1
L]
1

[T I



Tg(v . Rag) = Tyl¥, Kyo) #1025 (19b)

and

Zylv. kool = 2y
I‘,(v.k,,) = m (19¢)

is the unmatched, active gap reflection coefficient. In Eq. (19b), ﬂz and 42 de=
note the propagation constant and the length of the output transmission line.
The voltage V, across the gap is given by ®q. (D14) as

1 '\ . . ) .
1-833 Iy V. Ryg)

, .1 F
.
Viie A
Zy.8¢

Ty Vinew vl
S — )~
‘I

Figure 3. Equivalent Network for a Dipole
Element in a Cylindrical Array

Y

2.3 Active Array Fields

From Eqs. (3a), (1), (oa); and (), one firds for p > Py the axial remponeit
of the electric field of the active array

[rkp, & /N o
E v, ko) = ---3-9'“ “2 ..(T) H‘::“(k“p)
g
Z, . KnPo) q§1 Oq f!'.oi’&) Do« (21

Utilizing Eqs. (14b), (15d), (19) and the relations N = 2ir/a, b= dpo. Kq. (31)
can be cast into the form

E, V. ko) = 1'-'—6 S T 10, hyg) N2 ) 61000 bt (438)

m.o=- m
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where the active tranemission coefficient is

B Vg (v.
m("-"ni - -L’—E ('; Zypn (KnPo) 8y, 2 BaCla:  auw

2.6 Element Pattern
In view of the identity

- ow W - O
Ooe Ot = 43 Jwe f o ikt die,, | is=0.1 ....N—1) (23a)
27N ro 2 (t20,21....)

where §, and §, denote the Kronecker deltas, the expresaion for E(e) due to the . -
singly excited (8 = 0, t = 0) element becomes

:-:;*'ms_‘gp.ym z 3 einé

Transforming the integration variables k_ »k_ o + 2wn/d ~k_, one linds

N -
E,‘"(t) = Q{Epo Vine S 3 givme

V'O Mx -
, 3 T
E S Tee vk K waien o,
*I'n

a4 d
2 2,1/2
where & = (k° - k) and where the Floquet relation Ty, (¥, k o) = Ty
(v, k) hag been invoked. The sum over the index n in Eq. (24) may be further
counverted into an infinite integral so that

m L_J
Efw - amp Vime 3 3 o'i"m'*/ Tmo v.1) My (ko) ee2 i, . (25)

V0 Mz-g

Using the first term of the large-argument asymptotic expansion for H,, () (* o),
the far field becomes .

11




i~ o y of 2‘. 3 otmie-h I (¥:0.2) m.i

Y30 ma-e

with
-»
lnlvip.2) = f 7ep Tmotvie) oiptial o . (268b)

The integral in EqQ. (26b) ic evaluatud by the stationary phase method. Setting k_
=kcosu, P*rainf, & *rcosd, where Ohmusmdfmﬁocmmo.
one may write

xp*k,xtkimlu-ﬂ - 5 o i a7)

which results in a relevant saddle piint u'® « 0, and (o)

=k con §. The frst-order m phase svaluation of ¢

!‘ it t)
yields
Lnlv0.2) 2 2 T\ g (v 1 SO W) =i prnanal RN o : R
From Eqs. (28a), (26b), and (3:8). one has
Eyip = oy i d '& Vu- "'"" "0.9) %)
where ;
Fid.¢)= m " 2 ‘l‘”tv.l cne 9} o ¥mié- I (%)

* turns out that the lowest order term of E¢ 18 O ~ (1/r%), o that the E ¢ ton-
tribution to the far field may be nnritted, and, consequently, Eg constitutes the
entire far electric field due to a singly excited dipole elemeat in a muteh-temi-
nated array environment. ‘ihe realizad element gain pattern

(o) 2 :
qy*0,0) = % :"" (30a)

(o=

12




defined with respect to the available power Ptnc . IVmc| zIzl may now be written
as

Gy'*(0.0) = 4 4":-, L

(30b)
Denoting the complex field element pattern by
06'* (0.6) = Yom25 #0.0) (31a)
Eq. (29a) can be expressed in the form
o '
E"\r.0.0) = _fr?‘ Vino = 951091 - (31b)

3. ANALYSIS FOR ISOSCELES TRIANGULAR LATTICE

3.1 Array Model

. The dipoles are now arranged in an isosceles triangular lattice as shown in

Figure 4. This lattice may be generated from a rectangular one, for example, by
displacing every other ring by w/N rad in the angular éimt!on. The location of
the array clements on a cylindrical surface of radius '0 is defined by the skewed
curvilinear basic vectors (see Figure 4)

pst'sgl+tgz. (s=0, 1.0}..“'13"00 21, 000 ) (32)

where t indicates the ring and s the element numbher in it. The center of the
singly excited element (s = 0, t = 0) is located at (Pge # = 0, 3 20). The extent of
a wedge-shaped unit cell of rectangular cross section is 27#/N x 2d as indicated in
Figure 4.

3.2 Active Gap-Impedance and Reflection Coefficient

The analysis exploits the previously obtained results for a rectangular grid
geometry. In particular, the expansion of the unit cell Green's function as given
in Eq. (6a) also applies here with the Lroviso that the double sum ir lices are con-
strained to (m + n) of even parity as demonstrated in Appendix A. Consequently,
the relevant expressions for active impedances and reflection coefficients in an

13
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'pof'c-ﬂ
b=ap,

!‘lfﬁn 4. Geometry of the Circular Cylindrical Array of Dipcles ih &
Triangular Lattice

isosceles triangular lattice can be simply inferred from the solution for the cor-

responding rectsngular grid array by restricting the summation ta Eq. (8a) to
{m + n) even. With this proviso implemented in Eq. (16b), the systeia of linear
ecastions (16a) is alzo valid for isosceles triangular lattices. Thus, with this
moudification, the relations of Sections 2.3 and 1. 4 apply to cylindrical dipole ar-
rays with isosceles triangular lattices.

14
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3.3 Element Pattern

A single (s = 0, t = 0) array element excitation in an isosceles triangular lat-
tice of Figure 4 can be exprossed in terms of an excitation vector 3 = {§ <0 ‘to*
(=0, 1,...., N=1:t=0, £1,...). In Appendix B, ‘he following identity is dem-
onstrated:

'g o s o )‘]":-h..m dh,, -

d
%0 8w * TN 2, ) (38)

Each term in Eq. (33) under the sum and integral signs represents a unit-ampli-
tude progressive-phase array e¢xcitation, 3x»/N rad in angular direction and
kyod + T¥/N rad in the skew direction. In view of Eq. (33), the electric field due
to the singly excited dipole element in a triangular lattice environment is

) d - N1 ®/d
E“Hﬂ = m u§'u '/;‘ Er: vokn) '*” (34a)
-

where, from Eq. (22a)

\'/ huot .
Ealt; ¥okyo) = %’ 2 Ttk W ikpol o 70n® 02 (34b)
(m+a) = even

and Tmn is given by Eq. (23b). Following the procedure of Section 2.8, one can
readily show that the expressions for element pattern and far field are identical to
those of Eq. (31), where now

('
F(6.¢) = W}W {%- S 3 Tynelvkooes) o amis-F) (38)

V=N M=u-m»

and T oisg!ven by Eq. (23b) withn-()andkzo'kcoa 6.

2m

4 NUMERICAL ANALYSIS

Based on the above analysis, a Fortran IV computer program was generated
for evaluation of the phase sequence active gap-impedances, of the phase sequence
active reflection coefficients at the input to the matching network, and of the ele-
ment patiern for both rectangular and isosceles triangular lattice configurations.

15



41 Rectangular Lattice

The dipole current expansion coefficients ¢ (see Eq. (9)] were computed
from Eq. (16a), where Q is :he number of current terms. The (Q x Q) matrix in
Eq. (16a), with the elements A Pq as given by Iq. (18b), is Hermitian, that is,

A pQ = Aap. and, therefore, only Q(Q + 1)/2 matrix coefficients need be evaluated.
Furthermore, one observes that the A__ and, consequently, ¢_, as well as the gap
impedances z‘(v. k'o) and the nﬂectr:n coefficients [, 1(0. k‘o). are even func-
tions of v. This result follows, for instance,-for .\m. by first performing a
change of variables ¥ - ¥ =(N - 1)/2 for N odd and ¥- ¥ - N/2 for N even. As a re-
sutt, N-1 L g(N-1/2  po N odd and EN71 < Z N/2-1 = 4or N even. From
V=0 Vs-(N-1)/2 v y=-N/2
Eq. (16b), it is now obvious, upon replacing » by - » and simultanecusly m by -m,
that Am(v) . qu(- y). .

The Bessel and Hankel functions in expressions for A__ were ¢valusted by the
usual numerical methods, T each applicable in its own range of validity with reaspect
to the argument and order. To avoid numerical overflow or underflow in regions
where asymptotic expansions apply, the Bessel and Hankel functions were not cal-
culated separately but, instead, an asymptotic expressioa for z,mn‘i'm was emi-
ployed as described in Appendix E, In this fashion, the sxponential dependence of
the individual factors has been suppressed.

The double sum in Eq. (16b) was evaluated in the form I g, (I.‘mfm . With
respect to the rate of convergence of the series in Eq. (18b), the following obasir-
vations are relevant: The series ):n converges as 1/ n3. Since w/ apo <X 1 ih the
factor S,  as given by Eq. (14c), the rate ot(gc)mvorgence of Z 1is predominantly
determined by the large m behavior of Z, H}’ which is 1/wimi N. The slow
convergence of this series with respect to the angular index m was sccelerated 4s
described in Appendix C. With such convergence acceleration and with the nine-
significant-digit accuracy of the Bessel functions, a numerical accuricy to five
significant tigures in zg(v. k,q) was obtained for ka * 130, using modal indices m
and n between £10.

The set of equations (16a) was solved using Gauss's elimination method. It
should also be mentioned that for 0 = 7/2 (k_, = 0), that is, in the principal H-
plane cut of the element pattern, the axial dipole current dens:tr is refléction-
symmetric with respect to the dipole center. For.an arbitrary phasing k., that
is, for a conical cut with 6 # /2, odd terms also appear in the series Eq. (10a),
However, the resulting asymmetry is relatively minor, since the magnitudes of

7. Abramowitz, M., and Stegun, I. (1964) Handk
U:S. Dept. Commerce, Nat. Bur. Stand.
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even (y) dipole current terms are much smaller than the odd (q) ones. This fea-
ture is due to the constant gap E-field assumption.

Using the known dipole current coefficients, the active gap-impedances 2
(v, ¥,0) = Rg(v, kzo) + jXﬁ(y, k,q) were calculated from Eq. (18). Figure 5
shows ‘the '"broadside scan” gap-resistance R_(0, 0) versus the number of dipole
current terms for three dipole lengths, L = 0.4A, L =0.5A, and L = 0. 6A. The
respective reactances X_(0, 0) are seen in Figure 6. Since, in this case, the even
dipole current terms are not excited, they are not shown in Figures 5 and 6. One
observes that for short dipole lengths, a single current term yields a good approx-
imation to the dipole impedance. It was found that the curves Z g(u >0, kzo> 0)

versus Q exhibit a similar behavior as Z g( v=0, k
8

20 - 0) shown above.
was observed by monitoring the behav-
ior of current expansion coefficients and active gap-impedance values as a func-
tion of the number of unit cell modes Dnax and the number of current terms Q. It
was found that, for a stable solution, il is necessary to impose the condition

Q< 2anu/d. For example, ifn_ =15 andd = 0.7, one requires Q < 17 if
L=0.4A, Q< 21 #f L =0.5A, and Q< 25if L = 0.8A. If Q increases beyond
these values, the numerical values for Z _ tend to become progressively less ac-
curate, as can be seen from Figures 5 and 6. This condition on Q insures an ade-
quate resolution of the dipole current distribution in terms of the unit cell Floquet
mode basis. Therefore, the highest axial spatial frequancy of the truncated unit
cell mode basis 21rnmax/ d should be greater than the highest spatial frequency
Qm/L of the dipole current basis. If a high degree of accuracy in Z g is desired,
that is, when more current terms are needed, one must also increase n and

max
m » respectively. The reason for the increase of m along with n is

max max max
the behavior of the Bessel's functions in Eq. (16b). Namely, with increasing
N, ax’ the arguments of the Z yh(xn; a, po) and of H(yzr)n(xnpo) increase. There-
fore, to achieve a sufficient accuracy in A_ , it is necessary to increase Vo past
the transition region, that is, Vi > lxnpo [» where the convergence of the series
may be accelerated as described in Appendix C.

The active reflection coefficients 1"1(0. kzo) at the input port of the matching
network were computed from Eq. (19a). Two simple matching networks have been
considered: (a) series and (b) parallel, both shown in Figure 7. In each case,
2y 0 and network parameters have been chosen so as to match the active cylin-

drical array at ¥ = 0 and kzO = 0 (see Figure 3). In Figure 7, the transformer

The relative convergence phenomenon

8. Lee, S.W,, Jones, W.R., and Campbell, J.J. (1970) Convergence of numeri-
cal solution of iris-type discontinuity problems, Antennas Propag. Symp.
Dig., Ohio State University, Columbus.
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Figure 7. H-Plane Voltage Element Gain

Pattern for Cylindrical and Reference
Planar Arrays and Matching Networks.
(a) Series, (b) Parallel (b/A =0.6, d/A
= 0.7, ka = 120)

ratio n, = (Rg(o, 0)/21)1/2 in case (a). and n,
where Yg(v, zO) =1/2 (v. zo) G (v. z0)+jB {v, k g

The element patterns of the excited element located at (po. 0=90°, ¢=0°)
were calculated in the spherical coordinate system (r, 6, ¢ ). having its z-axis
coincident with that of the cylinder according to the relations in Eqs. (31) and
(29b).

4.2 Triangular Lattice

The steps in Section 4.1 apply also to a triangular lattice. The dipole current
densgity expansion coefficients are again computed from Eqs. (16a) and (18b) but
with (m + n) even. The convergence of the series in Eq. (16b) was accelerated as
described in Appendix C. Because the axial unit cell dimension is 2d (see Figure
4), the relative convergence condition is Q < Ln /d. The element patterns
were calculated from Eq. (31) using Eq. (35).

The program was run on a CDC 6600 computer at the Courant Institute of
Mathematical Science, New York University, N.Y., and at the AFGL Computer
Center, Hanscom AFB, Mass. All calculations were carried out in single preci-
sion (15 significant digits on a CDC 66800 computer) complex arithmetic. The ex-
ecution time for a 180-point element pattern is less than one minute,
required for this program is 150 kbytes.

max

The memory
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5. NUMERICAL RESULTS AND DISCUSSION

The amplitude and phase of the element patterns were computed for represent-
ative values of array parameters, and the results are grouped to exhibit the sig-
nificant trends. The numerical results stress the element performance aspects
relevant to cylindrical array design.

In crder to maximize the broadside element gain, a matching network appro-
priate to in-phase excitation of all dipoles was employed throughout. Except when
explicitly stated, the following values of dipole length, width, gap size, and dis-
tance to the cylindrical ground were employed, respectively, L/A = 0.5, w/A
= 0.05, h/A = 0.01, and s/A = 0.25, In all cases, field amplitude (voltage) ele-
ment patterns were normalized to the unit cell gain (47rbd/A 2)1/2. and 10 dipole
current terms were used in Galerkin's procedure. Most of the numerical results
were generated for rectangular grid arrays in conjunction with the design and per-
formance evaluation of thz cylindrical array described in Part 2 of this report.
They are presented in Figures 7 to 20; those for the triangular lattice appear in
Figures 21 and 22, Each is followed by a detailed discussion.

ELEMENT GAIN, |[F(n/2,0)|

(o] 20 40 (15} 80 100 120
AZ2IMUTH ANGLE, ¢ (DEG)

Figure 8. H-Plane Voltage Element Gain
Pattern (d/A = 0.7, ka = 120). Parameter:
azimuth spacing b/A = 0.5, 0.8, 0.7
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5.1 Rectangular Grid Array
5.1.1 INFLUENCE OF ARRAY GRID PARAMETERS
5.1.1.1 Element Amplitude Pattern - Forward Region

Figure 7 shows a comparison of the principal H-plane cut ( § = 90° ) of the
voltage element pattern for ka = 120, b/A = 0.6, d/A = 0.7 with that of the corre-
sponding planar array. It is observed that both patterns are similar and exhibit a
substantial drop-off near ® = 42°. In the planar array case, this drop-off is
caused by an end fire grating lobe condition (EGL) for b/A * 0.6 and, in the cylin-
drical array, by its quasipianar counterpart. As expected, the planai- array drop-
off is steeper (since, in view of the curvature in the cylindrical array, fewer elec-
ments participate in the EGL effect).

Figure 8 illustrates the b/A dependence of the § = 90°cut for ka = 120 and an
axial spacing of 0. 7A. It is found that, as in planar arrays, an increase of b/
ceuses a pradictable progressive narrowing of the element pattern.

The curves of Figure 8 also exhibit a ripple in the broadside region, whose
amplitude diminishes with tightening of azimuthal spacing and becomes negligible
for b/A = 0.5. On the other hand, for b/A = 0.7, one finds a peak-to-peak ripple
amplitude of about 0.5dB. In a low sidelobe cylindrical (or curved) array design,
it may be necessary to reduce the ripple amplitude and consequently employ a
tight agimuthal spacing. More on this subject will be said in Part 2 of this report.
The ripple is not an edge effect, as no aperiodic edge discontinuities exist in an-
gularly and axially periodic cylindrical arrays, but is due to the interference of
the direct single element radiation (with planar element pattern) with the grating
Jobes of respective quasiplanar subarrays excited by the guided creeping wave
phase gradient, as discussedl' 4 for the case of cylindrical arrays of aperture ele-
ments. Since the ripple is a result of a combination of the angular periodicity of
the array and its curvature, 1,4 it is also expected to appear, and is, indeed,
found in curved periodic dipole arrays. ' .

To exhibit the element pattern features as a function of the elevation angle,
Figure 9 shows a number of constant 0 (conical) cuts for ka = 120, b/A = 0.6, and
d/A = 0.7. Several trends are observed with decreasing values of & measured
from the cylinder axis: The EGL drop-off broadens and shifts toward larger val-
ues of ¢; the E-plane gain level is progressively reduced, and the ripple ampli-
tude decreases. The first two of these features may be explained in quasiplanar
terms and are predictable from the local planar grating lobe diagram adapted for
the cylindrical array geometry as shown in Figure 9. In this figure, Ugo © v/ka
= sin 00 sin ¢0 and Voo * kzolk = cos 00. As usual, the (m = 0, n = 0) reciprocal
lattice point specifies the main beam direction; all other points (m, n) correspond
to the grating lobe location in (u, v ) space. The (m, n) lobes with “?nn + vfnn <1
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are visibie., The amount f shift of EGL. drap-off toward larger valucs of ¢ with
decressing 0 may be predicted from the geometry of Figure 9, which leads to the
relation: * ‘

e ot em [ AV, A
""¢!6L-m[|uﬂ\l1 (coso*-nd) mb ]

(m'O. iloooo). (n'O.*l....)- (3‘)

It is seen from Eq. (36) and Figure 9 that in the H-plane ( § = 90" ), the grating

lobe {m = -1, n = 0) enters into real space at ¢EGL = 42°, As 0 decreases, the
corresponding $p, shifts toward larger values of ¢, causing, as slready men-
tioned, a widening of the element pattern. The potential EGL drop-off correapond-
ing to the axial grating lobe (m = 0, n = -1) for d/X = 0. 7, as predicted from

Eq. (36) is not noticeable at 6= 60, $z; =25.4° The tapering off of the EGL
effect with decreasing 6 and the associated diminishing of the ripple amplitude in
Figure 9 are attributed to the reduction of mutual coupling in axial dipole arrays
for directions off the principdl He-plane, and particularly in the near E-plane re-
gion. -

Figure 10 shows three E-plane cuts for axial spacings d/A = 0.5, 0.6, 0.7,
with b/A = 0.6 and ka = 120, It was verified (down to ka = 30) that the axial gain
roll-off with 6 matches that ifi appropriste planar arrays. Although sn axial spac-
ing of 0. 7A admits only a limited (to about 23° off broadside) elevation scan of an
active array, element patterns for large values of 6 are usefiil for sidelobe level
evaluation.

Figureil exhibits the dependence on cylinder radius (ka) of the EGL drop-off
and of the ripple il the 8 = 90° cut. R is seen that, with decreasing values of ka,
the EGL drop-off slope diminishes. Simultaneously, the ripple frequency is re-
duced and its amplitude increases. The tapering off of the EGL elfect is to be ex~
pected; since; with decreasing ka, fewer elements participate in its formation.
The reduction (with decreasing ka) of the ripple frequenty is due to reduction of
the creeping-wave grating lobe phase delay variation per unit increment in the ob-
setrvation atigle. Finally, the decrease of ripple amplitude with increasing ka is
expected due to the incredsed creeping wave loss. In the planar limit, no ripple
is observed.

*This relation can also be obtained from the condition of transition region bound-

ary HZ) (k_pg), that fs, | _| = K, Py, with ¥y/xypy = sin 6, sin @y, and

k,./k =cos 8p + nh/d.
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Figure 9. Voltage Element Gain Pattern and
Correspon Local Grating Lobe Diagram
(b/A = 0.6, d/A = 0.7, ka * 120). Parameter:
elevation angle 6= 30°, 40°,..., 9C°
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Figure 10. E-Plane Voltage
Element Gain Pattern (b/A

= 0.6, ka = 120). Pararmeter:
axial spacing d/A = 0.5, 0.8,
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5.1.1.2 Element Amplitude Pattern-Shadow Region

Knowledge of the shadow region slope is important in the evaluation of far
sidelobes. Figure 12 illustrates the dependence on cylinder radius of the shadow
region slope, inthe 6 = 90° cut, R is seen that the slope is linear on a dB scale
and is found to increase as (ln)l,s. The linearity of the slope indicates that the
angular pattern in the shadow region is primarily due to a single creeping wave
contribution with an angular attenuation constant proportional to (ln)l 3. The rip-
ple in the ¢ = 180° region, similar to that found in the case of su unperforated cyl-
inder, is a result of the interference of two creeping waves traveling in opposite
directions around the cylinder., The resolution of this ripple at the very low pat-
tern levels attests to the nigh numerical accuracy of the theory and numerical
techniques.

Figure 13 presents the § dependence of the shadow region slope. It is found
that in the range of @ shown, the slope varies as sin” 3¢ « The overall depend-
ence of the shadow region slope on (ka sin 0)”3 is consistent with other asymp-
totic developments, 1.4 In all cases, the computed shadow region slope was in-
sengitive to axial spacing.

Figure 14 exhibits the dependence of this slope on azimuthal spacing, for
d/A =0.7, ka = 120, 6 = 90°. One observes (see algso Figure 8) that the patterns
intersect; while the element pattern for b/A = 0.5 is wider in the broadside region,
its shadow region slope exceeds that for b/A = 0,7 so that its shadow region ele-
ment gain falls below that for b/A = 0.7, This result is not unexpected, because,
fo. smaller values of b/A, the creeping wave generating the shadow region H-plane
pattern encounters a larger density of match-terminated elementa. The minor

spendence of the E-plane pattern on b/A is not shown.

5.1,1.3 Element Pattern Phase

Design of a cylindrical arr- 7 requires knowledge of the element phase center
location. In Appendix F, we describe element phase pattern reference point trans-
for: ation from array axis to the point (0., §=90°, ¢ = ¢*). Namely, it was found
that the flattest element pattern phase in the broadside region is obtained for the
ph..e reference location approximately at (p, =a +0.8s, 6 = 90°, ®=0°), that
is, 0.2 s below the dipole center. Figure 15 exhibits the element pattern phase in
the 6 = 90° cut for the phase reference location at Pph? its dependence on b/A, for
d/A = 0,7. One ocbserves that the phase varies only by a few degrees up to the
EGL drop-off. Thus, the principal H-plane EGL position essentially determines
the limit of usefulnesas of the element, both in amplitude and phase. Figuré 16 pre-
sents the E~plane element phasge pattern versus axial spacing for the choice of
parameters of Figure 10.
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$.1.2 INFLUENCE OF DIPCLE DIMENSIONS

The influence of the dipole length L and of the distance to ground s on the cyl-
indrical array element pattern was investigated in the 6 = 9¢° cut for b/A = 0,8
and d/A = 0.7. For each selection of an (L., 8) combination, the array was
matched for in-phase excitation. The varistion of the element gain pattern with L
and (or) 8, for L/A = 0.4, 0.5, 0.6, and 0.2 £ 8/A £ 0.3 was found insignificant.
On the other hand, the influence of these parameters on the gap impedance was
observed (see Figure 17), R is seen that for L/A = 0.4, the unmatched broadside
gep impedance Z_(0, 0) is capacitive; for L/A = 0.8, it is inductive; while for
L/A =08, z‘(o. 0) passes through resonance.

5.1.3 FREQUENCY AND SCAN DEPENDENCE

Knowl~.dge of frequency and scan-depsndent gap impedance z‘( v, koot nis
needed to design a mi iching network. Figure 18 illustrates the frequency and scan
dependence of the E- and H-plane gap impedance. The array parameters at cen-
ter frequency ‘e are bIAc = 0,8, dlkc = 0.6, aIAc = 0,28, LIAc = 0,85, hlAc = 0,01,
and w/A, = 0.05 with ka = 120. The active gap-impedance curves Z (v, k g are
presented for the three frequencies ! = o.sre. f= 'c and £ = 1.21.. ’n Figure 13,
the gap impedances (normalised to zo = 100 Q) are plotted versus elevation scan
angle 6, and discrete values of azimuthal acan angles $g where cos §, * kgo/k
and sin 6, sin % " vika, »=0, 1,..., N - 1, This enables one to compare the
scan dependence of the dipole gap-impedance in a cylindrical array with an equiva-
lent infinite planar array. Although Z " depends on both the scan angle and fre-
quency {, it is seen that its variation with 40 is much greater than with ! within a
10 percent freguency band. In a cylindrical phased array, the large scan angle
Oo is associated with the edge elements of the excited arc, For broadside-
matched elements and a broadside scanned array, these slements will experience
a significant impedance mismatch, However, the associated reflection power loss
is usually reduced by an amplitude taper of the excitation. The variation of gap
impedance versus (60. ¢°) and versus [requency is similar (as one would expect)
to that of a corresponding planar array. Figure 18 compares gap impedance
Zg( 00 = /2, ¢o) dependence on ‘0 atf = fc. for ka = 30 and ka = 120 with those
of the equivalent planar array. The Smith chart normalisation is in this case
Z, = 5002. A region of overlap (¢° = (* to 50°) may be noticed. For ‘0 > 50
curves for ka = 30 first and subsequently those for ka = 120 gradually depart from
the planar ones, due to the curvature effect. R was verified that in the E-plane,
the values of Z ‘( 6o ‘0 = 0*) are essentially equal to those of the active impedance
of a corresponding planar array down to ka = 30 and are therefore not shown.

Figure 20 illustrates the frequency dependence of the H-plane element pattern.
The array was broadside-matched at center frequency f.. A simple, realistic
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matching network that consists of a Ac/ 4 transformer is also shown in Figure 20.
The transformer is placed a distance “2 away from the dipole so that the trans-
formed gap impedance at terminals (2 - 2°) is real. Since for the given geometry
zg(o. 0) = (137 - j38)Q and Z, = 50Q, the value of Z, was chosen to be Z,=137Q.
As a result, £, = 0.38Ac and Z, = 9592, With these (fixed) matching network para-
meters, the frequency was varied over a 10 percent band. It was observed that
the voltage element gain pattern does not change significantly. The pattern shape
depends primarily on b/\ us already discussed, while broadside gain decreased
0.2dB at the end of the band. The curves in Figure 20 can also be obtained (in the
lit region) approximately from

_ .
F g @l = V1= |TyiF. o)) cond | &

where ri may be computed from Eq. (19) with the help of Figure 18,

An additional remark is warranted here. It is known that in planar dipole ar-
rays, the feed structure can give rise to E-plane blind spots. These are not pre-
dicted by analyses that disregard the influence of the feed structure on radiation.
By inference, such blind spots are also expected to appear in cylindrical dipole
arrays. Various empirically bas=d remedies can be employed and have been
found effective, S

3.2 Triangular Grid

Two isosceles triangular grid geometries were considered. Both grids are
derived from a rectangular lattice with b/A = 0.6, d/A = 0.7, and preserve the
unit cell area. The first grid (a) is obtained by displacing alternate rings by half
the circumferential spacing, the second (b) by shifting alternate columns by half
the axial spacing. The two grids produce quite different element patterns.

In the isosceles triangular lattice, for a constant 6 cut the EGL drop-off, due
to an (m, n) grating lobe arriving at the unit circle should appear at |

N I 1\] i AN A
in ct’sm-sinﬂ[lml 1 ("“”"Zd)‘ ™ :

(m=0 £1,00.) (n=0, £1,...) (38)

where (m + n) is even, 7

9. Herper, J.C., Esposito, F.J., Rothenberg, C., and Hessel, A, (1977) Sur-
face resonances in a radome covered dipole array, IEEE Antennas Propag.
Symp. Dig.. Stanford University, Stanford, Calif., 198-201.
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Figure 21 shows the local grating lobe diagram for the grid of type (a). It is
seen that, in this case, relevamt grating lobes are (-1, -1) and (0, -2), According
to Eq. (38), an off H-plane grating lobe (-1, -1) should cause narrowing of the ele-
ment pattern with decreasing 6. This is in contrast to the rectangular grid refer-
ence array case where the EGL effect is due to an H-plane (-1, 0) grating lobe.

As a result, the rectangular grid element pattern widens with 6 tending toward the
axis [see Figure 9 and Eq. (36)]. Based on Eq. (38), one expects for b/A = 0.6,
d/A = 0.7 that ¢4, = 75° for 6 = 9¢° and #pgy, = 51° for 6=170¢°. The smocth
pattern in the H-plane and narrowing of the patterns (with decreasing 6) as well as
the predicted values of ¢EGL are also observed in Figure 21. In addition, one
finds an increased sharpness of the EGL drop-off and an increased level of the
associated off-broadside ripple with decreasing 8. Such behavior is not unexpected
because of the increase of mutual coupling when the grating lobe propagation direc-
tion approaches the principal H-plane with decreasing 6.

As expected, the E-plane element gain performance is found to be similar in
both the triangular and the rectangular lattice arrays, since, in both cases, the
axial grating lobe is located at -A/d.

The alternative grid (b) and the pértinent grating lobe diagram are shown in
Figure 22, The 6 = 90" pattern is similar to that for the rectangular grid refer-
ence array, which is plausible because of the same grating lobe location. In the
range @ =65° to 90°, the influence cf the grating lobe (-2, 0) on the element pat-
tern is dominant. According to Eq. (38), however, at 6 = 80°, two EGL effects
are expected: one for ¢EGL = 67° due to the scanned off H-plane grating lobe (-2,
0); the other at ¢EGL 2 32° due to the off-principal-plane grating lobe (-1, -1).
Both are barely noticeable in Figure 22. As 6 decreases, the former grating lobe
moves toward larger values of ¢, while the latter approaches ¢ = (°. For 6= 80¢°,
the dip is predicted to appear at ¢, =16° and, for @ = 4¢°, at 0.7°, which is
well borne out in Figure 22. For a further decrease in 6, in additionto (-1, -1),
the (1, -1) grating lobe also moves into real space, both at ¢ = (°. This results in
a sharp E-plane dip shown for 0 = 30°, With increasing values of ¢ (for ¢ = 30° ),
the (1, -1) grating lobe moves out of real space, which produces the peak in the
element pattern gain near @ = 20° in Figure 22.

The E-plane gain roll-off is slower than in the rectangular grid reference ar-
.ray case, because the E-plane grating lobe is further removed from the real space
edge. )

In view of the above data, the choice of rectangular versus triangular grid is
based on the maximum axial scan-angle, the extent of the excited array are, and
the desired frequency bandwidth, As the numerical results show, the lattice de-
sign of large, cylindrical, uniformly spaced arrays may be safely based on the lo-
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cal grating lobe diagram. (This, of course, excludes any blind spots due to feed
effects.)

5.3 Comparison With Other Results

The few relevant references found in the literature are as follows:

1. An asymptotic Gre=2n's function in the presence of a conducting cylinder
is employed5 to analyze circular arrays of axial dipoles in a rectangular lattice.
Comparison of numerical resultss with those based on modal analysis leads to the
conclusion that, although qualitative element pattern features in the forward region
such as the EGL drop-off and the off-broadside ripple are exhibited, the details
differ from those obtained from modal analysis in.the tollowing: (1) The 8 = 75°
near ¢ = 0° average level is higher than that in the principal H-plane, which is at
variance with the present results and with those for planar arrays; (2) The E-plane
element gain loss at @ = 60° (off axis) is about 25 percent, as compared with the
32 percent roll-off predicted by modal analysis; (3) No shadow region results are
presented; (4) The matching scheme and the pattern normalization are unclear and
no absolute element gain information is presented.

2. Another result is found. 8 Here, the analysis was carried out by an inter-
esting boundary layer method, using the parabolic equation approximation applied
to uniformly spaced arrays on convex cylindrical surfaces of arbitrary but slowly
varying curvature. The results relevant ‘o this report are coutained in Figure 3
of Indenbom and Filippov6 for b/A = 0.6 and d/A= 0.54. For convenience, this
figure is reproduced in Figure 23 here along with results for 6 = §0° and 90° ob-
tained by modal analysis. The normalized voltage element gain pattern in the 6
= 90° cut compares well with that based on modal analysis. However, the pattern
for @ = RC° does not match our results, both in the ¢ = (° gain level and in tne
element pattern shape. It exhibits two types of ripples absent in our results and
not accompanied by the usual EGL dips. From the grating lobe structure for the
geometry in question, EGL effects are predicted in this case, and, therefore, the
pattern is expected to be smooth,

3. We have also compared our results with results for cylindrical arrays of
aperture elements. The mutual coupling eifects, such as the endfire grating lobe
condition gain drop-off and the off-broadside ripple in dipole arrays above cylin-
drical ground are found to be considerably weaker than in similar arrays of aper-
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ture elements, in various analyses. 1,4,10,11,13 This is expected, in view of the

appearance of dipole "images" with phase reversed currents that tend to reduce
the mutual coupling in dipole arrays. By contrast, in aperture arrays, the''im-
ages'' reinforce the excitation of mutual coupling effects, It is reasonable to com-
pare the element patterns for arrays of axial dipoles with those of circumferen-
tially polarized rectangular waveguide elements, since, in both cases, the circum-
ferential plane corresponds to the direction of the strongest mutual coupling., It
can be seen from Sureau and Hessello and Figure 24 that, in the case of rectangu-
lar aperture elements, the EGL effect appears as a pronounced dip and not mer-:ly
as pattern drop-off. Also, the off-broadside ripple level is appreciably higher
than in dipole arrays. '

6. CONCLUSION

The numerical results for the element pattern of an axial dipole element in a
cylindrical phased array lead to the following conclusions:

1. The grating lobe effects on the element gain and phase pattern in uniformly
spaced, large radius, circular cylindrical arrays of axial dipoles are reliably
predicted by locally planar-grating lobe diagrams for either rectangular or tri-
angular lattices.

2. The creeping waves interfere with the direct element radiation in the for-
ward region and produce a far field in the shadow region with an angular attenua-
tion constant proportional to (ka sin 0)1/3. The influence of both effects on the
element pattern (ripples in the forward region and finite values of the pattern in
the shadow region) must be known to predict the sidelobe performance of cylindri-
cal phased arrays accurately.

3. Fora given lattice and frequency, the element gain patteru is insensitive

10. Sureau, J.C., and Hessel, A, (1972) Realized gain function for a cylindrical
array of open-ended waveguides, in Phased Array Antennas, A.A, Oliner
and G.H. Knittel, Eds., Artech House, Dedha'n, Mass.

11. Borgiotti, G.V., and Balzano, Q. (1970) Mutual coupling analysis of a con-
formal array of elements on a cylindrical surface, IEEE Trans, Antennas
ProEago. AP-la(NO. 1)-

12. Borgiotti, G, V., and Balzano, Q. (1972) Analysis and element pattern design
of periodic arrays of circular apertures on conducting cylinders, IEEE
Trans. Antennas Propag., AP-20(No. 5).

13. Borgiotti, G.V., and Balzano, Q. (1972) Conformal arrays on surfaces with
rotational symmetry, in Phased Array Antennas, A.A. Oliner and G. H.
Knittel, Eds., Artech House, Dedham, Mass.

14, Collin, R.E. (1960) Field Theory of Guided Waves, McGraw-Hill,
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to the element dimensions and ground plane spacing, provided in each case that
the element is appropriately '"broadside’’ matched.

4. The anmatched gap impedance exhibits significant dependence on dipole
length and its distance to ground. Thus, the basic limitations of the dipole ele-
ment rests in its scan and frequency-dependent impedance properties and those of
the matching scheme.

5. The gap impedance is similar to that of a corresponding planar array.
Therefore, planar array simulator techniques for designing and matching radiat-

- ing elements can be used,

6. The dipole phase center is located near the element and not on the 3round-
ing surface.

7. Mutual coupling effects, except for possible E-plane feed interactions pro-
ducing blind spots, are less pronounced than in similar aperture arrays.

8. Polarization purity, wide bandwidth, lower mutual coupling effects, ease
of fabrication, and low cost make the axial dipole a suitable element for cylindri-
cal phased arrays.

9. The theoretical results compare well with experiment (see Part 2 of this
report).
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Appendix A

Floquet's Theorem for lsoueolu Triangular
Array Lattice

inteadal

With reference to Figure 4, let the usual Floquet expansion tor :ny ﬁeld com=-
ponent in the unit cell of size (2x/N x 2d) be ) i e

v 3 pnn (0) 071 m P 2} | | (Ala)

mns-

where a are the amplitude coefficienta of the (m, n)th Floquet mode, with

mn
Vm— v+mN= V+2T1rm (m =0, £1,...) (A1lb)
and
k-m=kzo+ %T“ . . (n=0 %1,...) {Ale)

For a triangular lattice, Floquet's theorem imposes an additional constraint
on Eq. (Ala) so that a displacement by (#/N) in ¢ followed by that of d in z multi-
plies the field by the phase constant exp(-jd), that is,

Vid+e, aed) =eid Vi, 2) . (A2)
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It is seen from Figure Al that

B=vr+ hyd. (A3)
(s-1.4+2) l (s.t+2) I
—-——---
d
] |
1! tet-2) !
| |
a| | |
A
ts.t) (a+1.8)

LR

Ficun Al. Unit Cell Cross Section at
of a Circular Cylindrical Array
vmh ‘?rimulu- Lattice

Substituting Eqs. (Ala) and (A3) into Eq. (A2), one finds

s

S L IR N R

m,n2-x

R R VU S [ LR (Aa4)

m,ne -o

Using Eqs. (Alb) and (Alc) and the orthogonality of the Floquet basis in Eq. {Ala),

I PmE+ Rt _ T+ kgd) llmit 4 ar) (AS)

whereupon, it follows that

Bpq (01 (™NIT 4] =0, (AS)
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Thus, *on " 0 unless (m + n) is an even integer. Consequently, we conclude
that in an isosceles triangular lattice, Floquet modes with (m + n) odd are not ex-
cited.
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Appendix B
Single Element Excitation in a Triangular Lattice

& gingle (s = 0, t = 0) element excitation in the triangular isosceles lattice of

Figure 4 is expressed in terms of an excitation vector as “” ‘to* (820, 1,000y

N-1:t =0.*l. +so) where

/d
da W W, Ly
. v ivifs . Ky -kt
S0 6“’ ATN v‘:-n. " " f ¢« ™

L ®1)

~w/d

Each exponential term in Eq. (Bl) represents a unity-amplitude progressively-
phased array excitation 2%»/N in the angular direction and kyod * ®w¥/N in the
skew direction. In this Appendix, we verify the identity Eq. (B1). To this eund,
one cbserves that

n/d
- f ettt gy =5, - (t=0,%1,...) . (B2a)
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The product of the left-hand sides of Eqs. (B2a) and (B3b) is

8w au’t.ala = 8y 0420+ B3)

sl il Sk i

Since s = 0, 1,..., N - 1, it follows that, in Eq. (B3), only the 4= 0 term contri-
butes. Therefore, ‘to ‘20 +t, 24N ° ‘to éyo R E.D.

!
|
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Appendix C

Covergence Acceleration

As already mentioned in Section 4, the double sum in Eq. (16b) may be evalu-
ated asa::‘ g, (,‘:'; fmn)' In this Appendix, we describe a convergence acceleration

of the series ,“,:, fmn' To this end, we write

o8
Op=0= 3 o
ms-oe

where f = is given by Eq. (16b) as

. = t svee,y
sinz(vmx) (2 \ (m = 0.1 |
va(Kn: a, p’ Hym (KHPO' n= 0, tlo (X o)

mn" (W XP

with x = w/2p_. For convenience, let 0= 0+ 0°, where ¢ =f__ and
o o o ‘on

0,= 2;

m= woc fmn *

The prime indicates the exclusion of the m = 0 term in the infinite sum. The

(Cla)

(C1b)

(C2)

method tc be described is carried out for both the rectangular and the triangular

lattice geometries.
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C1l. RECTANGULAR LATTICE

To facilitate convergence acceleration of ¢°, it is desirable to introduce the
first-order large index asymptotic expression for Z mH Ve that is,

Z, i, p) "":,',, (knPo} = = JJy_(Kppo) Y, (Knpg) ~ i N (C3)
In view of Eq. (C3), one can rewrite Eq. (C2) in the following form:

o= m‘;g Fon+ S (C4a)
where, since Vi =V + mN,

Fn ~ %?ﬂlzym (K i &, pg) Hi,z"“ (Kn0g) -} ﬂll:llN -1 ;’ﬁ;’%@ ] (C4b)
and

g B il (Cde

TNIx? msz-se I“‘\l3

One obsgerves that the series in Eq. (C4b) now converges as I/mz. The suam S in
Eq. (Cdc) may be evaluated with the aid of Collin, 1 p, 570, The result is the
rapidly convergent series:’

= - - (CS5a)
$=] 7N*x? [A (1 - cos(2vx) ) - B]
where
. s 1 |
A= 2 % 1.20208690 {CS5b)
m=1.213...
and
. A s
B = (Nx)2 cos (2vx) [2 In(2Nx)~3 - (_h?h_;!_ -] (CSc)

48




C2. TRIANGULAR LATTICE

In view of Eq. (A8), we distinguish two cases:
For n odd

13....
0= X Fon* Sodd (n = £1, £3,...).
n= 0-30-‘0
The series
1 1.3"-. ﬁnz(l’mx,

s - | e———e— ———
odd ™) NI 2 me..34.  ImP

14

may be cast into a rapidly convergent form (Collin, "~ p. 580)

1
Sodda =} TNxE [Aogd (1-C08 (2vX) - By gql

where

.
Poaa= X = =1.05179979

m=1.3,...
and
= (Nx)? _3  (Nx?
Bodg = (Nx)? cos (2vx) [In(Nx) 2 + 18 ].

When n is even

where

=8 - S4q°
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Appendix D

Matching Networks -

The load impedance is connected to the output terminals of a two-port match- _

ing network characterized by its ecattering matrix,

In Section D1, we [irst derive expreuions tor the renection coefﬁcient at the
input to the matching network and for total voltage at the load.

Similarly, in Section D2, we derive expreasldns for the reflection coefficient
at the input to the matching network and for voltage at the load (dipole gap~-imped-
ance) which is now connected to output terminals of a matchmg network via a
transmission line,

In Sections D3 to D5, we determine the elements of a scattering matrix for
three specific simple maiching networks: series, parallel. and quarter-wave
transformer.

bl. LOAD IMPEDANCE CONNECTED TO OUTPUT TERMINALS OF
TWO-PORT MATCHING NETWORKS

The S-parameters of a line'ar. passive two-port network can be defined with
the help of Figure D1, As shown in the figure, V; (j = 1, 2) are the traveling
waves incident on the junction, and V; are the reflected traveling waves from the
junction. By linearity, the incident and reflected waves are related by

2
- +
v, = jgl Sij Vj fori=1, 2 (D1a)
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il‘
daiiiniligin: gd it

’81 -\ ~=V, 22’82 - ;
m S S (el A ‘?
1% S22~ 4

Figure D1. S-Parameter Representation of a Two-Port
Network

or

V] =8y Vi+8;, Vy (D1b)

Vj =Sy, Vy+Spqe Vg - (D1e)
From Eq. (D1b), it is seen that Sy, is the rgnection coefticient in the input guide i,
with guide 2 terminated in a matched load. Also, S,, is the transmission coeffi-
cient into guide 2 from guide 1 under the same condltion. Simﬂar Statements ap-
ply to the parameters S,, and S, ,. ' :

If guide 2, with its characteristic impedance Zz. is terminated by an imped-
ance Z,, . at the terminal plane (2- 2+) (see Figure D2), then Vz may be regarded
as the incident wave on Zzz,. and V2 is the wave reflected from Zzz,. The ratio

must be equal to the reflection coefficient of the load; hence, ‘ A 3
Vo Z33--23 ‘
L=--=%.——. 2)

Vo Z22 ., + Z2 ' ;1

1
z,8,,._Y%| e .||z ,
1=\ >V
S S
1 21 22 2‘

Figure D2. Two-Port Matching Network Connecting
Load Impedance Zg3~ With Transmission Line 1
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Using Eqs. (D1) and (D2), one can now determine the input reflection coefficient

I'i in terms of S parameters and [3:
- + ot -
Vi=Sn V=813 V3=5;,; 3V

80 that

r-Vi.s, -Suzsal, Su-475
1

11 g
vi Spg g =1 1=-S99 73
with

4=35:; 859 = S99 Sy

Consequently, the input impedance is

(D3a)

(D3b)

(D3¢)

(D3d)

(D4)

One can also find total voltage V2 at the load in terms of the S parameters and

the incident voltage V
In view of Eq. (D2). one has

+ ’ -
Vo =83, Vi +S5 I3 Yy

or
- S21 +
V, = V..
2 1-5y,0; 1
Using
- +
vi=hvy
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one [inds from Eq. (D1b)

+

- _ + -
Vi-S11 vi nvy-sy V'{_ N - 381y v

VS o= = (D6b)
2 S S12 Si2 !
or, upon substitution of (l"l - Sll)' from Eq. (D3c)
Sqy 9~ .
22 “22°
Using Eqs. (D5b) and (D6c), the total voltage at (2 - 27) is
Sg1 (1 + I3)
- +
Vo=V +tV, =T V.. (D7)
Y2 V2t VatTios, T 1
When the input line is matched as shown in Figure D3, one readily sees that
V, =Vi+V, =Vi(1+8,,) {(D8x)
2" V2% V2"V 22
or
v, Y2 (D8b)
2 1+ 22
and, consequently, since V'; =0,
S12
Y + 2l L
The output impedance {s then
1+ S22
Zowt =22 g ° < (D)
22
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‘i".,

"\»-V; 2
Vp B

N ]
szz 2'

Figure D3, Two-Port Network Connecting Matched-
Transmission Line 1 With Transmission Line 2

D2 LOAD (DIPOLE GAP IMPEDANCE) CONNECTED TO OUTPUT TERMINALS
OF TWO-PORT NETWORK VIA TRANSMISSION LINE

Transmission line of length 4, is terminated with dipole gap (load) impedance
Z g and connected to output terminals of matching network as shown in Figure D4,
The output transmission line 2 has characteristic impedance z2 and pmmation
constant B,. '

b &, *‘
. 2 <>
1 S,y S —
v: f\,"
21.31 fy =
y o 1s,. s
_4_
M 21 22 2"
| -
2:0 z

Figure D4. Load Impedance Zg Connected to Matching Network via
Transmission Line

In this case, from Eq. (D3c), the reflection coefficient at the input to the
matching network is

55




Siy - Al

" - (D10a)
1-8y9 Iy

where_ now

I, - r o122t | ' (D10b)

g
and
Zg = 23
r,- 2:72; . (D10c)

To find total voltage at z = 4,, that is, V_ a2V(zg = lz). in terms of incidence valt-
age V; at the input port (1 - 1°) of the matching network, it is convenient to pro-
ceed as follows:

Voz=0)=V3(a=0)+V; 3200 =v]ta=0N1+ 1y (D11a)

where

- + .
_-Y-z—(z_l) = e'j232£2

= (D11b)
2 V; z =0 g

and Fg is given by Eq. (D10c), Using relations

V,(2) = V; (z = 0% e‘jﬁzz + V; (z =0") .jﬂga

-V} @ = 0 o"382% 1 + 1, PP (D12a)

and Eq. (D11b), total voltage at the load is

Vp ety =V =V etz ), (D12b)
Subsgtitution of Eq. (D12a) into Eq. (D12b) yields

cvi=oheif2ta Lt Iy ’
Ve=vi=ohe i | (D13)
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Furthermore, substititing Eq. (D7) into Eq. (D13), we finally obtain

+ Iy
. S_L._‘ ,'152‘2 *,r'; . (D14)

D3S. S-PARAMETERS OF THE SERIES MATCHING NETWORK

The scattering-matrix elements will be evaluated for the series-matching net-
work connecting two lines with characteristic impedances Z1 and Z2 as shown in
Figure DS. This matching network, which consists of transformer and series re-
actance in cascade connection, .is employed in Section D5 for matching the dipole
gap impedance Z g(v. k o to TEM feed-transmission line.

kb

Figure D5. Series Matching Network

The values of the transformer ratio ng and the reactance Xzz, (v, k,g) are
chosen so that active reflection coefficient /;(v, kyq) at the input side of the
matching network is zero, To determine n, and Xzz,(u. kzo)' we first write the
expression for impedance at the output terminals (2 - 2 °) of the matching network.
In reference to Figure D4, the impedance looking into transmission line 2 at z = 0
is :

Zo2°(V s kz0) = Rype(w, kyg) + Xgp- (s kg

(v, kgo) cos Bada + j Zg sin Badg

= Z, Z2 cos Bolg + ] Zg( v, k,q sin ﬂz 49 (D15a)
where the gap impedance
Zg(v, kzo) = Rg( V, klo) +j xg(l‘. k20)° (D15b)
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Thus,

Rg3° (¥, keq)

With elements of the series matching network so defined, the corresponding
S-parameters can be found as follows:
It the output line is matched as shown in Figure D6, we have

zz - ;xn‘(u. kg0 -z
i | | Zm-Z of '

S = = = —— .
11 Zog = .
vi e Zin+ 2y Zg-1Xgg-(w ko)
2

——

X
"

1

Z2- Z33-(v, keq
*®
Zy + Zgqgo(¥, kyq) | (D17)

where Zzzo(v. kyq) is given by Eq. (D15a).

Figure D6. Network Nlustrating Evaluation of Syy
and Sg1 of Series Matching Network

With the input line matched (see Figure D7), one has

- 2 .
s Va Zout - 22 Z1ng - K3a°(v, kyq) - Zg
23 4+ ; T, 2. ~
Va oi ZowtZa  Zytp - Haao(h ko) + 2
vl‘o
*,
= 222" (v, kzo) - 23 | . (D18)

¥*
Zz + Zzza(y' kzo)




and

10

2

t——---—--‘

F D7. Network Nlustcating Evaluation of Sa3
and Syg of Series Matching Network

To find S,,, we again consider the output line matched (see Figure D8). On
the input line, we have

+ +

+ o +

Since
+
n ww
-l2=r2=-—= (1 -8,,)
no - n, 11
and
L =YV,
we see that
- _Y1VY
Y2 V2 = T(l -Su).
We now obtain
S21 7 ¥ “Ya T T K kg
1, 2" 2 "M 17 1%2270 K0
V2=0

Z3 2VRa3-(¥, kz0) 2

= x
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(D19a)

(D1sb)

(D202)

(D20b)

(D20c¢)

(D21)




Similarly, with the aid of Figure D7, one can determine S“. that is,

v
1 + o + 3 +
et ey (Vv eyY ViOQ-)ey, VI(1-8,,) (D23a)
= Yo (Vg - V)= YgVa (1 =0 =¥ Vg Sg2
0 2
celT2 z .z_, via-.s,,) (D2gb)
VithZ=nhh % z, 02" "
so that
vy z ngZ,
Snu;,—:— ';lno(l-saa,.z Tz a-ﬂ AR
2 ! 2 2+ “1% 22"'¥ %g0
v3=0
2 VRag“(v, keq) 2
. ’: 01 (Dae)
Zg +Zgg- (¥, kyy)
Notice the reciprocity relationship
z2.S,. = 2.8 (D23)

2712 17t

D4, S-PARAMETERS OF A PARALLEL MATCHING NETWORK

Here, we evaluate a scattering matrix of a parsllel two port matching network
which consists of the transformer and susceptance in cascade connection, as shown
in Figure D8. ' .

The values of the transformer ratio n, and the susceptance B". (», k'o) are

Figure D8, Parallel Matching Network




chosen 8o that the active reflection coefficient I (¥, k.o) st the input side of the
matching network is sero for the specific set of », k_g (see Figure Dd). The
transformer ratio no and susceptance B“. (v, k“) can be determined from the
relation for admittance at the output terminals of the matching network (2 - 2°)
looking into transmission line 3, which is

1

Y?!‘“' k‘o) = = 628‘( v, k:O) + jﬂuo(!'. k.o) (D24)

Zag- (¥ koo
where er (v, k.o) is given by Eq. (D13a). R is seen that

—
[T . | (D2s)

"o .cha“’ o kg

Next, we determine the S-parameters of the parallel nutchmg network, With
the help of Figure DS, we write

s N Y=Y Y- ﬂo (Yg - jBag * (v, kgo)
1"
+
Vil Yyv¥y, ¥ *‘o“s JByg -9, ko)
V3=0
_Yaz- (v, ko) - ¥ (D3sa)
Yz; (v, ko) +Y,
and
' Y Y 1
snc-% -1—(1-su)- 1 . . (D26b)
Vl . Yano no Y,zo('. k‘o) + Yz
Vg=0

With the aid of Figure D10, following a similar procedure, one determines

Sy that is,
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7" Y3 -Yout Yz - g +iBgg- (¥, keo)
n
U . 0
Sag = Y
+
vy Yo+ You Yo 5 - iBape (0 Ky
vi=0 0

Vg - Yp3- (v, ko)
&(v. k )

(D37a)

: *
Y2 + Y22

z0

= - - -

1 1ng -jBag’

oON

.‘0 | | 20

Figure D9, Network Illustrating Evaluation of
21

S,, and S, , of the Parallel Matching Network

11

Figure D10, Network Illustrating Evaluetion of
822 and S12 of the Parallel Matching Network

while 812 can be determined from the same figure following the procedure indi~
cated in the previous section or via a reciprocity relation, that is,

(D27b)

[T




' DS. S-PARAMETERS OF THE QUARTER-WAVELENGTH TRANSFORMER
MATCHING NETWORK

where Z,, . (v, kzo;zz) is given by Eq. (D15a).

Figure D11. Quarter-Wave Transformer Matching Network

From Eq. (D28), we obtain the relation for 1.2.

ZZZEE (v, kzO)

2 + 72 L %2
Rg(v. kzo) Zz+Xg(v. kzo)

tg 23242 =

where gap impedance

- Zg(u.kw)=Rg(v.kzo)+jxg(u.k )

z0
. and characteristic impedance of transmission line 2 is
Zz = Rg (V. kzo) .
: 63

A matching network, shown in Figure D11, consists of a transmission line
with characteristic impedance Zt and propagation constant Bt. The transmission
line length is &, = Ay/4. The network is placed a distance 42 away from the dipole
80 that the transformed gap impedance Zzz, at terminals (2 - 2¢) is real, that is,

(D28)

(D29a)

(D26b)

(D29¢)




.. i

The characteristic impedance of A, /4 transformer is then

Zt z z, Re[Zzz,(v. kzoz 3'2)] _ : (D30a)
and the propagation constant

In the remaining part of this section, we determine the scattering parameters
for a section of transmission lirie of length £ ¢ and characteristic iffipedance Zt
shown in Figure D12,

Figure D12, Quarter-Wavelength Transfcriner Matching
Network Illustrating Evaluation of S-Parameéters

Scattering parameters S, afid S,, are found with the Help of Figite D18 us
follows:
We define reflectjon coéllicients

F@=y) -l %%:— (b31a)
and
Iz =0 = e ?htht (D3 1k)
The impedance at the input port of the matching network is
1+ = 0% |
2(z =0) = Z, m . (D32)
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YT

Figure D13. Network Mlustrating Evaluation of E
of Quarter-Wave Transformer -
N%atching etwork ]

Consequently, we may write

\'2} Z(z = 0) - 21 _ , :
S;;=— | = . (D33)
vi Z(z = 0) + Z,
+
V2=0 )

Substituting Eq. (D31a) into Eq. (D31‘b) then Eq. (D31b) into Eq. (D32). and
finally Eq. (D32) into Eq. (D33), we obtain .

(Zg - 202y + Z7) e 2PtAt L (2, - 7 )z + 2p)
1° - -12Bk
(Z2 - Zt)(zt - Zl) e JePtht (Zt + Zl)(z2 + Zt)

S

To tind S2 1 which is defined as

s va (D3%a) !
£ —m— . : a
21 V+ ,

1,,+
Vy=0

we first write the following relevant expression for the reflection coefficient at

z=0:

Z(z = 0) - Zl

r(z = 0-) = ri = . (D35b)
Z(z = 0) + z,
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For0< & &4 total voltage on the transmission line is

V(0"
V(e = V'io*) et e (1 +——r oJ2Bt ').
vioh

At z = ‘t’

3Brat ﬂﬁt‘t)

Via) =V e T (140N e

Substituting Eq, (D31b) into Eq. (D37), we have

-j 2
Vi) = Vih e Beky a+ .

Furthermore, since
+ -
V(') = V(0 ) = V(0)
we see that
vio") = vvoha + ro*y

and consequently, using Eqs. (D38a) and (DS1b) from Eq. (D38b)

V(o) V(0)
. =Y
1+r@hH 1+l”,a“att

vteh =

Here
V(o) = V(o) = V') (1 + 1Y)
which, after substituting into Eq. (D39c), yields

v )1 + )
e—jﬂﬁtlt .

vt =
1+ F2

(D38)

(DST)

(D88)

(D38a)

(D36b)

o
ik ) i

m‘c)

=

(D40a)

(D40b)



Substituting Eq. (D40b) into Eq. (D38), we obtain

v G+ I‘L)o-jﬁt‘t (1+Iy)

- 4 .
l+r2.3‘o’ﬁtt

Vis,) =

Using
- +
V(lt) aV (z= ‘t )

one can therefore write

V(g =44) _u+rnR)asry gy,
. S = e .
217 ytz-07) 1+ r, e PPt

Finally, substituting Eq. (D35b) for I'l into Eq. (D42b), we obtain

e
zt (a+ I"2 e ! 3.t5t) + zlu - l"z e Ul t)

Sqy *

where [, is given by Eq. (D31a).

~ With the help of Figure D14, following the same procedure, one finds
Sm. However, because of the symmetry of the matching network, one sees from
Figures D13 and D14 that expressions for Syq can be deduced from Eq. (D34) by

interchanging subscripts 1 and 2. Thus,

BBk

Vi (21 -2ZNZg +23) e +(Zy ~ ZaNZy + Zy)
S22 = —+ = -japtjt .

Using a reciprocity relation, one can also write
Z

S;g=— S

12 21
Z,

where S,, is given by Eq. (D43).
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Figure D14, Network [lustrating Evaluation of
Sgg ‘and 313 of Quarter-Wave Transformer
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Appendix E
Asymptotic Expansions of Z,,{x s ¢, 0

In this Appendix, we derive asymptatic expressions of Z "m("n" xnpo) and
Zy (K g8e Ky P0) Hy'g) (,Pg) where Zy (k8. #,6) is given by Eq. (To) as

s

bl o b i

. . Jy (x, a) 3
Zy (k8. kyPo) = Ty (K, Po) - ;g—)i—‘) @ (e, ng) . €D
‘1

For simplicity of notation, we write

x,5x 2 o . | (E2a)

Xy 3 &P | | } (E2b)

V: ¥m | | | ' (E3¢)
where

- Vi ? Imlx ] < O. (E2d)

zn'

In this view, Eq. (E1) takes the form:

s



J’ ‘!1)

Zylx, , x) = Jplxy) - HY (=) (E3a)
3‘3) (x,)
where
H3 @) =3, -3 ¥, () (ESb)

The asymptotic expansions of Eq. (ESa) will be derived in all relevant regions with
respect to orders and arguments for both real and imaginary argumen: s.

El. REAL ARGUMENTS

El.1 Debye's Asymptotic Expansion for Large Orders

If x is fixed and positive and » is large and positive, then from Eqs. (8.3.7),
(6.3.8), and (9.3.9)7

- 'p
Jylx) ~ —te———s (Eda)

Jznv tanho ]

Yy(X)'v"/ 2 VB . (Edb)
xytavha y

where
B = a - tanha (Bde)
1 1+ V1 'jf ) .
a=—fn " —— (Ed4d)
2 1- V1a g)
® (cotha)
'j =1+ z &_—i— (Ede)
k=1 - ¥
- . uy (cotha) )
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In Eqs. (Ede) and (E4f)

g t)=1 (ESa)
u, ) « B3 (ESb)
24
2 4 ]
1182
3 -] 7 9
414720
4 ] 8 10 12
u, () = 4468125 ¢t - 94121676 ¢ + 3490022430 t - 446185740 t "+ 1850107235 ¢
¢ 398 13120
(ESe)
or in general

t
1 .
umm-i-t' a-the m+:‘/u -atu (&, ®=0,1,...). (ESH
0

In terms of Bessel's function of first kind J, (x) and Neumann functions,
Yy (x), Zy(x,, xy) can be written in the form '

| 1 33 x Ny (xg) + 3y (xg) ¥y, (xg) Yy (xg)
Zy(xl. !2) =Jp (!2) - — +

F(xl) Yg (xl)
a
Jp(xy) Jplxg) Yy (xg) - Ty (xg) ¥ (xg)
+] -—1 3 vzl 1y J (EGa)
Y, ("1)
where

J% (xl)

F(xl)'l+— . (E6b)
Ys ("l)

1

: [
T
PPN TR O

[PUTRAOT



Substitution of Kq. (E4) indo X'q. (ES) yields

1 -¥By 1 J,_’ sy -P4B) + B3)

Z R ® e - — 22
vl x) V/2xvtanha, {.jz F(8,) 'yl) [4 ¢ v
Lt e -8 L (." VB - B) 1% vab, +h))]}
1 3 81
(FTa)
where asymptotic expansion of F(x,) is

2 N

F(g) =1 +(-2'-'1;‘——) Nl (ETb)
yl

In Eq. (ET), subscripts 1 and 2 refer to arguments x, and x,, respectively.
Similarly, one may write
Jyixg) ]

Zy (g ) B xy) = 3, (x) ¥y (xy) ["—v'—’: -3

1 [33 ap ad p) - Fmy) ¥] txg) + 33y (xy) Iy (ug) Yy lay)Yp ()
Fix,) ¥} x) . |

vy Iy 'y) .ri(h) Y'ﬁ - ﬂz (xﬂJ} (x9) Y, (%) = Jp (%)) Y:(:,) Yy “1’]
| 1Y)

Y3 (x)

from where using Eq. (E4), the respective asymptotic sxpansion is
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1 .’
Zy tay2g) B txg) = — - ,-13- iy, -

2 a
. _l_ (:1_1) 2 _._E e 2v(28 + By . '_’_3 .-2v(8ﬁ1 - 83)
F(ﬁl) Sy 8 2

 §
ELLERRCL RN LIRS
s 2

i1 25

a
+ .yl 2 .-20(’1 - "))]! : (E8bd)
'jl

where F(8,) is given by Eq. (ET). Note that @, > a4 since x,< x,.

El.2 Limiting Forms for Small Arguments

In this section, we evaluste Z,, (x,, X,) and Z,, (x,, Xy) Hi  (xg) when
Xy» X3 = 0. The expressions are applicable for 0 £ 24 £ 0.0001.
Since

X =k 1-4§2 (E9a)
one sees that when

“—E"l

k

then x  ~ 0 and, cousequently, as given by Eq. (E2a) and Eq. (E2b), X, X9 ~ O.
We distinguish two limiting cases:

(a) =0, x+ 0

In this case, from Abramowitz and Stegun (p. 360), ' when x ~ 0

Iy~ 1 (E10a)
2

Yo (x)~ 5 tnx (E10b)

HZ ()~ - jptnx (E10c)
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and therefors

, )
Jotxq) H§ xp)
xl.xz-’o xi.:‘oo 1

sakpg V1-42 ) E10d)
=0, ¥ 0.
e V1-43 )

2] -lim
-1
v $#0, Re[r] > 0, x-0
In this case, rromAbMaﬁ&q- (p. 360), Beasel hancticas of the
first kind, Nmmwmmmhmudinhmdﬂm
functions (see Abramowits and un. p. 238) as follows:

N
Jy (x)~ (E1la)
r+1)y
1 -y
Y, (x)~ - ;rm(f) ‘ (E11b)
1 g\ V .
1 w~ 3z rey) . ®1tc)

Substituting Eq. (E11) into Eq. (ESa), we get
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(@) »=0, x-0
Using Eq. (E11), we have

um 2oty xg) B ) « - ¥ lim (x -‘33):- xy

4nx

2. .20 - 1
Uy ) X, X9 =0

2 . x; 4nxy 2 N h\‘ - 47 tnkﬁl'/ ,
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M) ¥$0, x-0
In this case, using Eq. (E11) from Eq. (E3a)
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we obtain

E2.

where x, and x, are real. Using Eqs. (9.68.3) and 0.8.4)7

where I, (x) and Ky (x) are Modified Bessel functione, Z (x,, %,) H‘: Yx) becomes

: 2v
(@)« 1 |12
lim Zy(xl. xz) Hp (xz = Ty 1- kpo o
xl,xz*o
IMAGINARY ARGUMENTS

Wienk 2 > k? in Eq. (E20), then

"n“j'/kzzn _k,ﬂ = -jlxn|..
We set

x1.= I K

X = | "nlpﬂ

-y
Iy (~jx) = e L p(x)

2 ;&
H(f) (-jx)=jF e 2 K p(x)

2

Iy(x
Zy (=ixy, ~jg) H) (-ixy) = j = [Iy(xz) -

v
K,

xl)

In the following two sections, we expand Eq, (E18c) in the asymptotic series.

E2.1 Asymptotic Expansions for Large Arguments

When . is fixed, |x| is large from Egs. (9.7.1) and (6, 7.2)7

X
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p-1 (M- 10p-9) _ (- 1)(M-9NK-25)
8x 2! (8x)2 31! (8x)3

si=]_-

o =1+ Ul (B LE=9) (M- 1(E-SNH-25),
8x 21 (8x2 - 31 (8x)3 '

‘and

M=4v2 .

Using Eq. (E19), we have

(E18b)

(E19c) |

(E19a)

(E1ge)

. I (Xl) 1 81 .gz '2( ) v
I, (xp) = = K,,(xz)] Ky (2y) = = (8, 8y = —— e %2 " X11 (m30)
[ Kyplx,) : X, - %) o
\ where again subacripts 1 and 2 are associated with arguments x4 and Xy, respec-

tively.

E2,2 Uniform Asymptotic Expansions for Large Orders
From Eqs. (9.7.7) and (9.7.8)"
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k=1 vk ) 7
When v +~ + =, these expansions hold uniformly with respect to x in the sectar :

larg x| € 7 /2 - €, where € is an arbitrary positive number. Here

t= e (E320) -

(Eagb)’

and uk(t) are given by Eq, (ES),

Using Eq, (E21) to Eq. (E22), we can write

1

(x1)

8., 8 - Lo
) ;:k k2 -2v(n, nl)] - @3
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where

LML (B33
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E2.3 Limitiag Forms far Smau Arguments

Here we evaluate :
] Iy(xq) . [
Xy, X5>0 s .
1’72 4

where, again, we distinguish twa cases:

18



one

and

(a) v =0, x+0
Using Eqs. (9.6.7) and (9.6.8)"

Io(x) ~1

Ko(x)~ -4n x

sees that.
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In this case, from Eqs. (9.6.7) and (9.6.8)"
x ¥
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The phase refemee point- u atr = 0. thd t:. lt the orightotzth . I»indﬂed c_o-
ordinste system (2, #, %) shown in Figures 1 and 3. It was found that the Nattest
element pattern phase in the broadside ‘region il obtnmd whcn the phaae retgmce
point is at (py =a+0.8s, 0= o0, '$ = ¢°) that 1s, 0.3s below the dipole ccntei'.
Therefore, it is desirable to represent the far field at (r. 0, 4 ) with respect to th o
new phase reference point (Ppp, 0= 90°, ¢ = 0*).

Denoting this field by E4(®) (R, 0, ¢) where

R=r-pphsin0cos¢_ o (F2a) °

is the distance between the new phase reference point (pph. 6=90°, $=20") and
the field observation point (r, @, ¢), we may write K

P, 8in @ cos ¢
B R 0. )25 i, 0. 000 P
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and ES') (r, 6, ¢) is given by Eq. (F1), In Eq. (F2b), we gasumed that, so [ar as

amplitude of the field is concerned, 1/r x1/R,
Substitution of Eq. (F1) into Eq. (F2b) yields

(e) \/ 3 e (@), . .
Eo (R, Q. ‘)' vmc go (pph' 6.9)

4:21 r

where

»jk o, 8in 6 cos ¢
g(;)(pph; 60,9) = ‘(ae)(pph303 o, ‘)8 ph
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ga (pph-o’ 6,9) ga (0.¢).
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Element Pattern of an Axial Dipole in a Cylindrical
Phased Array, Part 2: Element Design
and Experiments
1. INTRODUCTION

This part describes the experimental effort and: presents measured data that -

strongly support the validity of the theoretical model -over a meaningfully large *‘f’“"‘” i

range of element and array parameters. These prgﬂmonts are in gupport of the-
oretical work presented previcmllyl (sece. m Part 1). A_

The array construction. i& dommion ollowed by the design and
matching of the folded dipole radiste ¥pprimental amplitude ele-
ment patterns are presented in Seaﬁgu4 vd;h _results superimposed,

showing good agreement in spite of the fact tlnt tht thcorx addresses a simple di-
pole and the measurements were pertormed ona !oldtd dipole. Measurements
substantiating the theoretical results obtained for the: o’timent phase pattern are
discussed in Section 5. Array beam lorming effects are: brleny considered in
Section 6 along with polarization purity. The influence of c'ipole feed line interac-~
tions on the radiation pattern are pointed out.

(Received for publication 31 January 1984)

1. Herper, J.C,, Hessel, A,, and Tomasic, B. (1885) Element pattern of an
axial dipole in a cylindrical E?h.”d array, Part 1: Theory, Part 2: Element
design and experiments, IEEE Trans. Autennas Propag., AP-38,
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2. ARRAY DESCRIPTION

An experimental test bed was fabricated to investigate the sidelobe and azi-
muth phase scan capabilities of cylindrical array antennas. This array was used
to measure the element patterns over a frequency range that exceeded the compo-
nent design bandwidth. The array is described in this section, including the feed
network and dipole geometry,

The array consists of 80 axial column networks covering a 150* arc of a cyl-
inder as shown in Figure 1. The diameter (2a) of the cylinder at the dipole ground
plane is 29 wavelengths (all dimensions, unless stated otherwise, are referenced
to the center frequency f,). The column networks extend approximately 15 wave-
lengths, with 22 axial dipoles spaced at 0.67 wavelength. This corresponds to an
elevation incipient endfire grating lobe angle of 24* at the high end of the + 6 per-
cent operating band for which the array had been designed, The column networks
are assembled into an array with a locally rectangular lattice having circumferen-
tial spacing of 0.5 wavelength at the high end of the frequency band. This spacing
was chosen to provide adequate suppresaion of the wide angle circumferential grat-

Figure 1, Cylindrical Array Test Bed Antenna
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ing iobes characteristic of fully excited cylindrical arc arrays with large aperture
utilization, 2

The column networks are microwave printed circuits of two types. The first
type conaists of 22 axially polarized folded clipoll:s radiating elements, each fed by
a half-wavelength differential line length balun and matched to its own input line by
a multiple step transformer. These radiators are used to measure patterns in the
conventional manner on a far field range. The other type of column network incor-
porates a microwave printed circuit that generates an axial illumination taper func-
tion for low sidelobe patterns. This type of network, originally designed for the
array studies, is useful for measuring circumferential element patterns through
the >xial beam peak by virtue of its increased isolation from ground reflections on
the measurement range. Also, increased line source gain over that of the single
dipole improves the measured signal-to-noise ratio permitting circumferential
patterns to be measured to large angles before becoming noise limited. The meas-
ured noise level of the single dipole element patterns is approximately 10dB poorer
than the noise of the column patterns, in good agreement with the gain improve-
ment, Except for the noise level, measurements with both types of networks for
the same conditions provided identical results.

The column networks utilize the folded dipoles and baluns discu=sed above,
fed by a 22:1 corporate power divider designed to produce a -35dB Taylor illumi-
nation using compensated Wilkinson couplers. The symmetric and fuur-port re-
sistive nature of these coupler makes them particularly useful. They provide a
uniform power split in amplitude and phase as a function of frequency, excellent
wideband match, and high isolation, Each nf the dipoles and the column network
input is effectively isolated frcm the mismatches created at other dipoles during
variations of scan and frequency. As a result, any dipole in the array sees an ex-
cellent feed match over all scan and frequency conditions. The printed circuits
are copper-clad Kapton, sandwiched between alumirum ground planes using low di-
electric constant foam spacers. The response of the couplers and transmission
lin=ag is flat in amplitude and phase over the 12 percent operating band. Measure-
ments on the 80 column networks over the operating band showed rms phase and
amplitude tolerances of 2.1° and 0.15dB, respectively. A picture of the network
is shown in Figure 2 with the protective foam partially removed to display the di-
poles.

2. Hessel, A, (1972) Mutual coupling effects in circular arrays on cylindrical
surfaces - aperture design implications and analysis, Phased Array Anten-
nnas, Artech House, Dedham, Mass., p. 273.

3. Jasik, H, (1959) Antenna Engineering Handbook, McGraw-Hill, New York,
p. 3-13 to 3-157 —
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STRIPLINE
FEED

Figure 2, Column Network With
Protective Foam Partially Re-
moved Showing Dipole Radiators

3. DIPOLE DESIGN

A folded dipole fed by a differential line length balun was chosen because of its
extensive use in planar arrays and good correlation to theoretical performance for
those applications. A previously used design was scaled to the desired operating
band, and the element was matched in a planar waveguide simulator using both re-
fNection and transmission measurements. An outline diagram of the radiator is
shown in Figure 3. The dipole is 0. 42 wavelength long and is located at 0.24
wavelength above the cylindrical ground at center frequency. It is fed by a two-
wire line in the free space region and matched to two stripline conductors of the
same impedance. The balun is formed in this stripline by adding a half-wave-
length of line on one feed. The two lines are then reactively combined into a 7082
characteristic impedance stripline used for the remainder of the printed circuitry.

Ag described by Jasik, 3 the folded dipole performs in a fashion similar to the
ordinary center-fed dipole with the folded lines providing an impedance trans-
former batween the dipole and its feed line. The nearest to broaiside single-
element, single-mode 45° H-plane simulator shown in Figure 4a was employed
for matching the dipole. The simulator was excited at the end opposite the dipole
with an orthogonal mode transducer. This provided a convenient means to meas-
ure and/or terminate the cross-polarized radiation. Also shown in Figure 4b is a
test dipole in its mating ground plane fixture. Figure 4c is a diagram of the ele~
ment lattice, For this configuration, the simulator height is the same as the
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L GROUND PLANE

70 OHMS

F 3. Outline Diagram ol
Folded D!Fole Radistor With
Stripline Feed

axial dipole spacing and the simulator width is 30 percent grester than the circum-
ferential dipole spacing. The dipole is located one-third the simulator width from
the left side wall. The simulator is exact for an element in a planar array. It ap-
proximates the active dipole impedance at the average scan in the arc excited for
broadside beam formation in a large cylindrical array. The resulting impedance
match over thex 8 percent design operating band is shown in Figure 5. A voltage
standing-wave ratio (VSWR) of better than 1.3:1 was achieved over the operating
band.

4. MEASURED AMPLITUDE PATTERNS

Dipole element amplitude patterns were measured on a 675-ft antenna range.
Extensive measurements were performed in the £ 6 percent design operating band.
Selected measurements were also made up to 30 percent above the design operat-
ing frequency. All measured dipole patterns correlated very well with the theo-
retically predicted performance,

The experimental data required somewhat modified computations compared to
those presented. First, since the experimental dipole ia matched ai ¢* in the
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b c

Figure 4. Waveguide Simulator for 45 H-Plane, (" .E-Plane Scan.
(a) Simulator body with orthogonal moade transdueer. (b) Test
dipole in fixture. (c) Relationship of array lattice to simulstor
size and location

E-plane and 45° in the H-plane, the theoretical data shown here were recomputed
to reflect this condition. In general, this effect causes a reflection mismatch of
about 0.5dB at broadside, which flattens the ceuntral portion of the pattern out to
the match angle and slightly narrows the patterns for angles greater than the
match angle. The second change incorporsied inio the compuier simuiation arises
from the fact that, in the experiments, the physical dimensions are held constant

]

»
i




151
VWA / .
..“0. ~
L]
[ ]
; :
e, A T
v vl ' i
“""‘ t

Figure 5. Measured Dipole Impedance in
Waveguide Simulator ¢

while the frequency varies. This leads to a set of normalized element and array
dimensions that increase linearly with the impressed source frequency. Tables
are provided on each pattern indicating the nornralized dimensions of the antenna
at the measurement frequencies. The symbols are defined in a list at the end of
this report.

The measured H-plane pattern at the center frequency (f = f.) is shown as the
solid curve in Figure 6. This condition corresponds to a circumferential spacing
between dipoles of 0. 48 wavelength. The curve shows the element gain in dB nor-
malixed to that of the unit cell area versus the circumferential field angle ¢ meas-
ured from the element broadside as the abscisss. This is a principal H-plane col-
umn pattern (taken normal to the cylinder axis, that is, at ¢ = 90" with respect to
the cylinder axis). Measurements were terminated at -40dB below the beam peak
(# = £120°) because of test and site instrumentation noise limitations. Superim-
posed on this plot are theoretical points represented by dots. The excellent agree-
ment is evident; this, in spite of the fact that the theoretical model employs a

sunpie sicip dipoie of negligibie radial thickness, while the aciual {vided dipoie is




printed on radial boards. The leugth L of the theoretical model was assumed
equal to that of the top arm of the folded dipole.

A similar set of data at a frequency 4 percent higher showing excellent corre-
lation between experiment and theory is shown in Figure 7. This result is of in-

0 ‘\
~ =10
g t = 10t
< b = 0.484A
Z d = 0673A,
< L = J.413A,
O -20] s = 0.242A,
2 w = 0.058 )\,
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o ka = 914
0 A o
© _30 6 = 0
o MEASUREMENT
esesse THEORY
—40 1 {
-120 -60 ) 0 120

CIRCUMFERENTIAL ANGLE ¢, (DEG)

Figure 6. Measured and Theoretical Amplitude
Patterns at Center Frequency
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% f = 1.038fc
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< L = 0431,
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CIRCUMFERENTIAL ANGLE ¢, (DEG)

Figure 7. Amplitude Patterns 4 Percent Above
Center Frequency
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terest for comparison to slot data provided in the literature. 4 This frequency
provides an effective element spacing of 0.50 wavelength. In contrast to a slot ar-
ray with this spacing, the dipole patterns show no discernible element pattern
ripples in the forward region. For further comments in this connection, see
Part 1 of this report.

Data for a circumferential element spacing of 0.594 wavelength at f = 1, 2f,
is shown in Figure 8. To accentuate the pattern ripple in the lit region, this graph
is plotted with the ordinate on a linear (voltage) scale, again normalized to the
unit c21l gain, Correlation of the experimental data (solid curve) with the theory
(dots) is again remarkably good, especially since the test frequency is more than
20 percent above the center frequency at which the components were designed to
operate,

A series of measurements presented in Figure 9 shows the dipole pattern per-
formance parametrically at a number of conical cut angles relative to the cylinder
axis. These patterns are for polar angles @ of 90° (Figure 9a), 80° (Figure 9b),

1.0

1.226 fc
0.594 A
0.825 A
0.509 A .
0.298 \ ¢
0.069 \ .
0.004 A

112.2

OO

0.8

0.6

oo

erIserac~

0.4

COLUMMN GAIN, (VOLTS)

0.2 } e————— MEASUREMENT
seseeese THEORY

0 1 1 1
0 20 490 60 8G 100 120

CIRCUMFERENTIAL ANGLE ¢, (DEG)

Figure 8. Amplitnde Patterns 22,6 Percent
Above Center Frequency

4, Sureau, J.C., and Hessel, A, {(1971) Element pattern for circular arrays of
waveguide-fed axial slits on large conducting cylinders, IEEE Trans, An-
tennas Propag. AP-19:64-76.
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Figure 9. Amplitude Batterns at Various
Elevation Angles. (a) 6=0. BB =10

7¢° (Figure 9c), and 60° (Figure 9d). In contrast to the previous patterns, which
were coluwran patterns, these element patterns are of lower absolute gain by about
10¢B and are thus affected by measurement system noise at a 10dB higher level.
Pe:k gain decreases with elevation angle at nearly a cosine voltage pattern as ex-
pected for an E-plane dipole scan when both the unit cell directivity and scan mis-
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Figure 9 (cont.). Amplitude Patterns at Various
Elevation Angles. (c) § = 20°. (d) §=30°

match gain loss are included. The patterns show a.general circumferential broad-
ening with increasing elevation scan. As indicated by the superimposed dots, the
actual performance is very close to the theoretically predicted performance.
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5. PHASE PERFORMANCE

In Part 1 of this report, the phase response of the dipole was found to be flat
to within a few degrees over a large portion of the lit region when tue phase refer-
ence distance from the ground plane is taken about 80 percent of the distance {rom
the ground to the dipole strip. Instead of measuring the element phase directly, a
rather difficult undertaking on a far-field range, an indirect focusing measure-
ment was performed.

The focusing experiment consists of the following tasks. A convenient illumi-
nation function is impreesed on the array. Far-field patterns are measured as
the element phase excitation is varied by incrementing the apparent radius of the
cylindrical array illumination. This simulates the variaticn of the dipole phase
center location. An error in the phase center location impresses a quadratic
phase error on the array collimation which, in turn, manifests itself as pattern
defocusing. From a practical viewpoint, approximacely the same results may be
obtained more easily by varying the test frequency without readjusting the array
collimation. This effectively simulates the desired collimation variation.

The experiment begins with the radius set to the actual dipole location. As

the radius (equivalent dipole radial distance) is reduced, the nulls of the close-in
sidelobes incrrase in depth, indicating an improvement in the array focusing.
For a radius corresponding to 70 percent of the distance from the ground plane to
the dipole, these nulls reach maximum depth, Null depths at this point are about
15 dB better than at the beginning of the experiment, Further reduction of the ra-
dius only degrades the null depths, confirming that the optimum location has been
exceeded. These measured results are shown graphically in Figure 10.

The theoretically predicted phase center location thus agrees very well with
the results of the focusing measurement. This good focus held over at 8 percent
test band and with circumferential phase s an of the array. The agreement with
theory is further accentuated since the folded dipole feed employed in the meas-
urements can be expected to have a slightly different phase center location than
the flat strip dipole investigated in the theory.

6. ARRAY BEAM FORMING CONSIDERATIONS

An important effect in cylindrical arrays is the formation of residual delete-
rious grating lobes. This effect is caused by the edge subarrays of the aperture,
which need to be given large progressive phase delays to collimate the beam and
which have large enough spacing to generate a grating lobe. Using the precise
element patterns generated by the methods described in Part 1, the grating lobes
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Figure 10. Location of Dipole Phase Center

can be accurately predicted. These lob2s generally occur at azimuth angles
greater than 90° from broadeide, may have large amplitude compared with the de-
sired sidelobe levels, and are usually very broad in angular extent. These effects
are demonstrated in the literature, 2,5,6 The ow., design tool effective in con-
trolling these grating lob2s is the reduction of the circumferential spacing between
the elements of the array. Figure 11 shows the result of a pa:ametric study of
this effect. A cylinder of constant radius (ka = 140) is considered, and the grating
lobe level is plotted versus circumferential element spacing, A 120° sector of the
array is assumed to be excited with a low sidelobe illumination at broadside and -
15° circumferential phase scan, which corresponds to75° scan for the edge ele-
ment. When the beam is broadside to the excited aperture, the far cut sidelobes
computed in the region where the grating lobe appears approached -70dB for close
element spacings. For element spaciug near 0. 50 wavelength, the residual grat-
ing lobe level generated is negligible. As the element spacing approaches 0.60
wavelength, lcbes well above -40dB (relative to the main beam) are produced.
For many applications, such grating lobe levels would be unacceptable.

Another deleterious mutual coupling and curvature effect, discussed in Part 1
of this report, results from the behavior of the element pattern as a function of
element spacing. At element circumferential spacings corresponding to 0.5 wave-

5. Sureau, J.C., and Hessel, A. (1972) Realized gain function for a cylindrical

array of open-ended waveguides, Plhased Array Antennas, Artech House,
Dedham, Mass., p. 315,

6. Provencher, J.H. (1972) Conformal arrays on surfaces with rotationul sym-
metry, Phased Array Antennas, Artech House, Dedhamm, Mass., p. 301.
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Figure 11, Grating Lobe Level of a Low Sidelobe
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length, a smoocth dipole pattern is observed. For spacings greater than this, a
ripple, duz to creeping waves propagating around the cylinder. appears in the
broadside region of the element pattern. 2 In a cylindrical array, this ripple can
act like a periodic error across the array, and, at some frequencies, may lead to
the generation of anomalies in the near-in array sidelobes. Indeed, element rip-
ple levels of a few tenths of a dB peak-to-peak could cause sidelobe peaks on the
order of -40dB below the array beam peak. '.nis effect on the sidelobe level is
generally difficult to predict because it depends on the proper correlation of the
periodicity of the element pattern ripple with the effective element spacing, each
of which depends on frequency. Many frequency patterns must he evaluated to
guarantee suppression of this effect to acceptable levels. If measured patterns

.are employed to predict array performance, care must be exercised in separating

the actual ripples obtained on a full cylindricul array.from those caused by exper-
imental anomalies such as range multipath or edge effects due to finite subarray
test units. '

It is also useful to compare the dipole performance with that of a slot radia-
tor. 4 For equivalent size cylinders and element spacings, the dipole has consid-
erably less pattern ripple than the slot. This is atiributed to the imaging property
of the dipole above its ground (see Part 1 of this report). Also, the dipole has a
slightly broader pattern due to the weaker grating lobe effect as compared to the
slot, These features may favor the dipole in array designs that utilize significant
portions of a cylindrical arc or where low sidelobes are desirad.

As discussed in Part 1 of this report, the longitudinal current approximation
for the axial strip dipole does not predict any circumferential far E-field. Array




pattern messurements confirm this analysis. The cross-polarization was meas-
ured over a large region about the beam in tha circumferential, axial, and skew
planes, The cross-polarizatiun level was everywhere better than 10dB below the
corresponding co-polarization level at the same engle and was generally as gcod
as the cross-polarized level of the site transmit dish. Thus, no experimental evi-
dence exists for coupling to the cross-polarized radiation within the measurement
region. This indicates that other structures such as the feud lines and the folded
feed that could couple to the cross-pclarized radiation generate no significant cir-
cumferential electric field.

It has been noted in the literature that, under certain circumstances, the di-
pole feed lines can resonate with the dipole to form pattern blind spots in the E-
plane. 7.8 Data and discussion of this effect are scanty, difficult to obtain, and
often limited to verbal presentations. Pattern data in the axial (E) plane were
limited to 30° because of turntable loading considerations. No resonance effects
were encountered out to this point.

7. CONCLUSION

The measured results for the element pattern of an axial dipole element in a
cylindrical phased array lead us to the following conclusions:

1. The modal analysis developed in Part 1 of this report agrees very well
with the measured data indicating that the method and the numerical results are
very accurate,

2. The assumption that the feed lines have little effect is justified. For the
scans and frequencies investigated, no differences were discernible hetween the
theory (no feed modelead) and the experiments with the folded end-fed dipole and
two-wire-line feed,

3. A high polarization purity and wide bandwidth dipole and feed are achiev-
able.

4, The accurate knowledge of element pattern amplitude and phase afforded
by this method makes possible the precise prediction of cylindrical array perfor-
mance over a full 360° azimuth range.

7. Reale, J.D, (1974) PAR hardened cross-~dipole array (U), in 20th Aon, Tri-
Service Radar Symposium, p. 351,

8. Herper, J.C., Esposito, F.J., Rothenberg, C., and Hessel, A. (1977)
Surface resonances in a radome covered dipole array, 1977 International
Symposium Antennas Propzg. Digest, p. 198,

97




1.

References

Herper, J.C., Hessel, A., and Tomasic, B. (1983) Element pattern of an
axial dipole in a cylindrical phased array, Part 1: Theory, Part 2: Element
design and experiments, [EEE Trans. Auntennaa Propag., AP-33,

Hessel, A, (1973) Mutual coupling effects in circular arrays on cylindrical
surfaces - aperture design implications and analysis, Phased Array Auten-
nas, Artech House, Dedham, Mass., p. 273. T

Jasik, H., (1959) Antenna Engineerirg Handbook, McGraw-Hill, New York,
pp. 3-13 to 3-15,
Sureay, J.C., and Hessel, A, (1971) Element pattern for circ\ﬁla{ arrays of
[EEE Trang, Au-

waveguide-fed axial slits on large conducting cylinders, [EE
tennas Propag. AP-18: 64-76,

Sureau, J.C., and Hesael, A, {1872) Realized gain function for a cylindrical
array of open-ended waveguides, Phagsed Array Antennaa, Artech Houge,
Dedham, Mass., p. 315, '

Provenzher, J.H. (1972) Conformnal arrays on surfaceg with rotstioml.symu-
metry, Phagsed Array Antennas, Artech House, Dedham, Mass., p. 301,

Reale, J.D. (1974) PAR hardened cross-dipole array (U), in g0th Ann, Tri-
Service Radar Symposium, p. 351. '

Herper, J.C., Esposito, F.J., Rothenberg, C., and Heasgel, A. (1877) Sur-
face resonances in a radome covered dipole array, 1977 Internaxional Sym-
posium Antennas Propag. Digest, p. 198.




0 %0

Nomenclature

Polar angle measured from the cylinder axis
Circumferential angle measured from element broadside
= (90° - §) - Elevation anglc measured from normal to axis
Beam pointing direction for active phased array

Array circumference

Circumferential element spacing

Axial element spacing

Dipole length

Dipole spacing from cylindrical ground

Dipole width

Dipole feed gap

Number of dipoles in each ring (192)

Operating frequency

Design center frequency

NOTE: All lengths in wavelengths at the test frequency.
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